1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
//===- CallGraphSort.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// Implementation of Call-Chain Clustering from: Optimizing Function Placement
/// for Large-Scale Data-Center Applications
/// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
///
/// The goal of this algorithm is to improve runtime performance of the final
/// executable by arranging code sections such that page table and i-cache
/// misses are minimized.
///
/// Definitions:
/// * Cluster
/// * An ordered list of input sections which are laid out as a unit. At the
/// beginning of the algorithm each input section has its own cluster and
/// the weight of the cluster is the sum of the weight of all incoming
/// edges.
/// * Call-Chain Clustering (C³) Heuristic
/// * Defines when and how clusters are combined. Pick the highest weighted
/// input section then add it to its most likely predecessor if it wouldn't
/// penalize it too much.
/// * Density
/// * The weight of the cluster divided by the size of the cluster. This is a
/// proxy for the amount of execution time spent per byte of the cluster.
///
/// It does so given a call graph profile by the following:
/// * Build a weighted call graph from the call graph profile
/// * Sort input sections by weight
/// * For each input section starting with the highest weight
/// * Find its most likely predecessor cluster
/// * Check if the combined cluster would be too large, or would have too low
/// a density.
/// * If not, then combine the clusters.
/// * Sort non-empty clusters by density
///
//===----------------------------------------------------------------------===//
#include "CallGraphSort.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include <numeric>
using namespace llvm;
using namespace lld;
using namespace lld::elf;
namespace {
struct Edge {
int from;
uint64_t weight;
};
struct Cluster {
Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
double getDensity() const {
if (size == 0)
return 0;
return double(weight) / double(size);
}
int next;
int prev;
size_t size = 0;
uint64_t weight = 0;
uint64_t initialWeight = 0;
Edge bestPred = {-1, 0};
};
class CallGraphSort {
public:
CallGraphSort();
DenseMap<const InputSectionBase *, int> run();
private:
std::vector<Cluster> clusters;
std::vector<const InputSectionBase *> sections;
};
// Maximum amount the combined cluster density can be worse than the original
// cluster to consider merging.
constexpr int MAX_DENSITY_DEGRADATION = 8;
// Maximum cluster size in bytes.
constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
} // end anonymous namespace
using SectionPair =
std::pair<const InputSectionBase *, const InputSectionBase *>;
// Take the edge list in Config->CallGraphProfile, resolve symbol names to
// Symbols, and generate a graph between InputSections with the provided
// weights.
CallGraphSort::CallGraphSort() {
MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
DenseMap<const InputSectionBase *, int> secToCluster;
auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
auto res = secToCluster.try_emplace(isec, clusters.size());
if (res.second) {
sections.push_back(isec);
clusters.emplace_back(clusters.size(), isec->getSize());
}
return res.first->second;
};
// Create the graph.
for (std::pair<SectionPair, uint64_t> &c : profile) {
const auto *fromSB = cast<InputSectionBase>(c.first.first->repl);
const auto *toSB = cast<InputSectionBase>(c.first.second->repl);
uint64_t weight = c.second;
// Ignore edges between input sections belonging to different output
// sections. This is done because otherwise we would end up with clusters
// containing input sections that can't actually be placed adjacently in the
// output. This messes with the cluster size and density calculations. We
// would also end up moving input sections in other output sections without
// moving them closer to what calls them.
if (fromSB->getOutputSection() != toSB->getOutputSection())
continue;
int from = getOrCreateNode(fromSB);
int to = getOrCreateNode(toSB);
clusters[to].weight += weight;
if (from == to)
continue;
// Remember the best edge.
Cluster &toC = clusters[to];
if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
toC.bestPred.from = from;
toC.bestPred.weight = weight;
}
}
for (Cluster &c : clusters)
c.initialWeight = c.weight;
}
// It's bad to merge clusters which would degrade the density too much.
static bool isNewDensityBad(Cluster &a, Cluster &b) {
double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
}
// Find the leader of V's belonged cluster (represented as an equivalence
// class). We apply union-find path-halving technique (simple to implement) in
// the meantime as it decreases depths and the time complexity.
static int getLeader(std::vector<int> &leaders, int v) {
while (leaders[v] != v) {
leaders[v] = leaders[leaders[v]];
v = leaders[v];
}
return v;
}
static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
Cluster &from, int fromIdx) {
int tail1 = into.prev, tail2 = from.prev;
into.prev = tail2;
cs[tail2].next = intoIdx;
from.prev = tail1;
cs[tail1].next = fromIdx;
into.size += from.size;
into.weight += from.weight;
from.size = 0;
from.weight = 0;
}
// Group InputSections into clusters using the Call-Chain Clustering heuristic
// then sort the clusters by density.
DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
std::vector<int> sorted(clusters.size());
std::vector<int> leaders(clusters.size());
std::iota(leaders.begin(), leaders.end(), 0);
std::iota(sorted.begin(), sorted.end(), 0);
llvm::stable_sort(sorted, [&](int a, int b) {
return clusters[a].getDensity() > clusters[b].getDensity();
});
for (int l : sorted) {
// The cluster index is the same as the index of its leader here because
// clusters[L] has not been merged into another cluster yet.
Cluster &c = clusters[l];
// Don't consider merging if the edge is unlikely.
if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
continue;
int predL = getLeader(leaders, c.bestPred.from);
if (l == predL)
continue;
Cluster *predC = &clusters[predL];
if (c.size + predC->size > MAX_CLUSTER_SIZE)
continue;
if (isNewDensityBad(*predC, c))
continue;
leaders[l] = predL;
mergeClusters(clusters, *predC, predL, c, l);
}
// Sort remaining non-empty clusters by density.
sorted.clear();
for (int i = 0, e = (int)clusters.size(); i != e; ++i)
if (clusters[i].size > 0)
sorted.push_back(i);
llvm::stable_sort(sorted, [&](int a, int b) {
return clusters[a].getDensity() > clusters[b].getDensity();
});
DenseMap<const InputSectionBase *, int> orderMap;
int curOrder = 1;
for (int leader : sorted)
for (int i = leader;;) {
orderMap[sections[i]] = curOrder++;
i = clusters[i].next;
if (i == leader)
break;
}
if (!config->printSymbolOrder.empty()) {
std::error_code ec;
raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
if (ec) {
error("cannot open " + config->printSymbolOrder + ": " + ec.message());
return orderMap;
}
// Print the symbols ordered by C3, in the order of increasing curOrder
// Instead of sorting all the orderMap, just repeat the loops above.
for (int leader : sorted)
for (int i = leader;;) {
// Search all the symbols in the file of the section
// and find out a Defined symbol with name that is within the section.
for (Symbol *sym : sections[i]->file->getSymbols())
if (!sym->isSection()) // Filter out section-type symbols here.
if (auto *d = dyn_cast<Defined>(sym))
if (sections[i] == d->section)
os << sym->getName() << "\n";
i = clusters[i].next;
if (i == leader)
break;
}
}
return orderMap;
}
// Sort sections by the profile data provided by -callgraph-profile-file
//
// This first builds a call graph based on the profile data then merges sections
// according to the C³ heuristic. All clusters are then sorted by a density
// metric to further improve locality.
DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
return CallGraphSort().run();
}
|