1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
//===-- PipeWindows.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Host/windows/PipeWindows.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/raw_ostream.h"
#include <fcntl.h>
#include <io.h>
#include <rpc.h>
#include <atomic>
#include <string>
using namespace lldb;
using namespace lldb_private;
namespace {
std::atomic<uint32_t> g_pipe_serial(0);
constexpr llvm::StringLiteral g_pipe_name_prefix = "\\\\.\\Pipe\\";
} // namespace
PipeWindows::PipeWindows()
: m_read(INVALID_HANDLE_VALUE), m_write(INVALID_HANDLE_VALUE),
m_read_fd(PipeWindows::kInvalidDescriptor),
m_write_fd(PipeWindows::kInvalidDescriptor) {
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}
PipeWindows::PipeWindows(pipe_t read, pipe_t write)
: m_read((HANDLE)read), m_write((HANDLE)write),
m_read_fd(PipeWindows::kInvalidDescriptor),
m_write_fd(PipeWindows::kInvalidDescriptor) {
assert(read != LLDB_INVALID_PIPE || write != LLDB_INVALID_PIPE);
// Don't risk in passing file descriptors and getting handles from them by
// _get_osfhandle since the retrieved handles are highly likely unrecognized
// in the current process and usually crashes the program. Pass handles
// instead since the handle can be inherited.
if (read != LLDB_INVALID_PIPE) {
m_read_fd = _open_osfhandle((intptr_t)read, _O_RDONLY);
// Make sure the fd and native handle are consistent.
if (m_read_fd < 0)
m_read = INVALID_HANDLE_VALUE;
}
if (write != LLDB_INVALID_PIPE) {
m_write_fd = _open_osfhandle((intptr_t)write, _O_WRONLY);
if (m_write_fd < 0)
m_write = INVALID_HANDLE_VALUE;
}
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}
PipeWindows::~PipeWindows() { Close(); }
Status PipeWindows::CreateNew(bool child_process_inherit) {
// Create an anonymous pipe with the specified inheritance.
SECURITY_ATTRIBUTES sa{sizeof(SECURITY_ATTRIBUTES), 0,
child_process_inherit ? TRUE : FALSE};
BOOL result = ::CreatePipe(&m_read, &m_write, &sa, 1024);
if (result == FALSE)
return Status(::GetLastError(), eErrorTypeWin32);
m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
m_read_overlapped.hEvent = ::CreateEventA(nullptr, TRUE, FALSE, nullptr);
m_write_fd = _open_osfhandle((intptr_t)m_write, _O_WRONLY);
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
return Status();
}
Status PipeWindows::CreateNewNamed(bool child_process_inherit) {
// Even for anonymous pipes, we open a named pipe. This is because you
// cannot get overlapped i/o on Windows without using a named pipe. So we
// synthesize a unique name.
uint32_t serial = g_pipe_serial.fetch_add(1);
std::string pipe_name;
llvm::raw_string_ostream pipe_name_stream(pipe_name);
pipe_name_stream << "lldb.pipe." << ::GetCurrentProcessId() << "." << serial;
pipe_name_stream.flush();
return CreateNew(pipe_name.c_str(), child_process_inherit);
}
Status PipeWindows::CreateNew(llvm::StringRef name,
bool child_process_inherit) {
if (name.empty())
return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32);
if (CanRead() || CanWrite())
return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);
std::string pipe_path = g_pipe_name_prefix.str();
pipe_path.append(name.str());
// Always open for overlapped i/o. We implement blocking manually in Read
// and Write.
DWORD read_mode = FILE_FLAG_OVERLAPPED;
m_read = ::CreateNamedPipeA(
pipe_path.c_str(), PIPE_ACCESS_INBOUND | read_mode,
PIPE_TYPE_BYTE | PIPE_WAIT, 1, 1024, 1024, 120 * 1000, NULL);
if (INVALID_HANDLE_VALUE == m_read)
return Status(::GetLastError(), eErrorTypeWin32);
m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);
// Open the write end of the pipe. Note that closing either the read or
// write end of the pipe could directly close the pipe itself.
Status result = OpenNamedPipe(name, child_process_inherit, false);
if (!result.Success()) {
CloseReadFileDescriptor();
return result;
}
return result;
}
Status PipeWindows::CreateWithUniqueName(llvm::StringRef prefix,
bool child_process_inherit,
llvm::SmallVectorImpl<char> &name) {
llvm::SmallString<128> pipe_name;
Status error;
::UUID unique_id;
RPC_CSTR unique_string;
RPC_STATUS status = ::UuidCreate(&unique_id);
if (status == RPC_S_OK || status == RPC_S_UUID_LOCAL_ONLY)
status = ::UuidToStringA(&unique_id, &unique_string);
if (status == RPC_S_OK) {
pipe_name = prefix;
pipe_name += "-";
pipe_name += reinterpret_cast<char *>(unique_string);
::RpcStringFreeA(&unique_string);
error = CreateNew(pipe_name, child_process_inherit);
} else {
error.SetError(status, eErrorTypeWin32);
}
if (error.Success())
name = pipe_name;
return error;
}
Status PipeWindows::OpenAsReader(llvm::StringRef name,
bool child_process_inherit) {
if (CanRead())
return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);
return OpenNamedPipe(name, child_process_inherit, true);
}
Status
PipeWindows::OpenAsWriterWithTimeout(llvm::StringRef name,
bool child_process_inherit,
const std::chrono::microseconds &timeout) {
if (CanWrite())
return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);
return OpenNamedPipe(name, child_process_inherit, false);
}
Status PipeWindows::OpenNamedPipe(llvm::StringRef name,
bool child_process_inherit, bool is_read) {
if (name.empty())
return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32);
assert(is_read ? !CanRead() : !CanWrite());
SECURITY_ATTRIBUTES attributes = {};
attributes.bInheritHandle = child_process_inherit;
std::string pipe_path = g_pipe_name_prefix.str();
pipe_path.append(name.str());
if (is_read) {
m_read = ::CreateFileA(pipe_path.c_str(), GENERIC_READ, 0, &attributes,
OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);
if (INVALID_HANDLE_VALUE == m_read)
return Status(::GetLastError(), eErrorTypeWin32);
m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);
} else {
m_write = ::CreateFileA(pipe_path.c_str(), GENERIC_WRITE, 0, &attributes,
OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);
if (INVALID_HANDLE_VALUE == m_write)
return Status(::GetLastError(), eErrorTypeWin32);
m_write_fd = _open_osfhandle((intptr_t)m_write, _O_WRONLY);
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}
return Status();
}
int PipeWindows::GetReadFileDescriptor() const { return m_read_fd; }
int PipeWindows::GetWriteFileDescriptor() const { return m_write_fd; }
int PipeWindows::ReleaseReadFileDescriptor() {
if (!CanRead())
return PipeWindows::kInvalidDescriptor;
int result = m_read_fd;
m_read_fd = PipeWindows::kInvalidDescriptor;
if (m_read_overlapped.hEvent)
::CloseHandle(m_read_overlapped.hEvent);
m_read = INVALID_HANDLE_VALUE;
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
return result;
}
int PipeWindows::ReleaseWriteFileDescriptor() {
if (!CanWrite())
return PipeWindows::kInvalidDescriptor;
int result = m_write_fd;
m_write_fd = PipeWindows::kInvalidDescriptor;
m_write = INVALID_HANDLE_VALUE;
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
return result;
}
void PipeWindows::CloseReadFileDescriptor() {
if (!CanRead())
return;
if (m_read_overlapped.hEvent)
::CloseHandle(m_read_overlapped.hEvent);
_close(m_read_fd);
m_read = INVALID_HANDLE_VALUE;
m_read_fd = PipeWindows::kInvalidDescriptor;
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
}
void PipeWindows::CloseWriteFileDescriptor() {
if (!CanWrite())
return;
_close(m_write_fd);
m_write = INVALID_HANDLE_VALUE;
m_write_fd = PipeWindows::kInvalidDescriptor;
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}
void PipeWindows::Close() {
CloseReadFileDescriptor();
CloseWriteFileDescriptor();
}
Status PipeWindows::Delete(llvm::StringRef name) { return Status(); }
bool PipeWindows::CanRead() const { return (m_read != INVALID_HANDLE_VALUE); }
bool PipeWindows::CanWrite() const { return (m_write != INVALID_HANDLE_VALUE); }
HANDLE
PipeWindows::GetReadNativeHandle() { return m_read; }
HANDLE
PipeWindows::GetWriteNativeHandle() { return m_write; }
Status PipeWindows::ReadWithTimeout(void *buf, size_t size,
const std::chrono::microseconds &duration,
size_t &bytes_read) {
if (!CanRead())
return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32);
bytes_read = 0;
DWORD sys_bytes_read = size;
BOOL result = ::ReadFile(m_read, buf, sys_bytes_read, &sys_bytes_read,
&m_read_overlapped);
if (!result && GetLastError() != ERROR_IO_PENDING)
return Status(::GetLastError(), eErrorTypeWin32);
DWORD timeout = (duration == std::chrono::microseconds::zero())
? INFINITE
: duration.count() * 1000;
DWORD wait_result = ::WaitForSingleObject(m_read_overlapped.hEvent, timeout);
if (wait_result != WAIT_OBJECT_0) {
// The operation probably failed. However, if it timed out, we need to
// cancel the I/O. Between the time we returned from WaitForSingleObject
// and the time we call CancelIoEx, the operation may complete. If that
// hapens, CancelIoEx will fail and return ERROR_NOT_FOUND. If that
// happens, the original operation should be considered to have been
// successful.
bool failed = true;
DWORD failure_error = ::GetLastError();
if (wait_result == WAIT_TIMEOUT) {
BOOL cancel_result = CancelIoEx(m_read, &m_read_overlapped);
if (!cancel_result && GetLastError() == ERROR_NOT_FOUND)
failed = false;
}
if (failed)
return Status(failure_error, eErrorTypeWin32);
}
// Now we call GetOverlappedResult setting bWait to false, since we've
// already waited as long as we're willing to.
if (!GetOverlappedResult(m_read, &m_read_overlapped, &sys_bytes_read, FALSE))
return Status(::GetLastError(), eErrorTypeWin32);
bytes_read = sys_bytes_read;
return Status();
}
Status PipeWindows::Write(const void *buf, size_t num_bytes,
size_t &bytes_written) {
if (!CanWrite())
return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32);
DWORD sys_bytes_written = 0;
BOOL write_result = ::WriteFile(m_write, buf, num_bytes, &sys_bytes_written,
&m_write_overlapped);
if (!write_result && GetLastError() != ERROR_IO_PENDING)
return Status(::GetLastError(), eErrorTypeWin32);
BOOL result = GetOverlappedResult(m_write, &m_write_overlapped,
&sys_bytes_written, TRUE);
if (!result)
return Status(::GetLastError(), eErrorTypeWin32);
return Status();
}
|