1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
//===-- SymbolFile.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/TypeMap.h"
#include "lldb/Symbol/TypeSystem.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/lldb-private.h"
#include <future>
using namespace lldb_private;
using namespace lldb;
char SymbolFile::ID;
void SymbolFile::PreloadSymbols() {
// No-op for most implementations.
}
std::recursive_mutex &SymbolFile::GetModuleMutex() const {
return GetObjectFile()->GetModule()->GetMutex();
}
ObjectFile *SymbolFile::GetMainObjectFile() {
return m_objfile_sp->GetModule()->GetObjectFile();
}
SymbolFile *SymbolFile::FindPlugin(ObjectFileSP objfile_sp) {
std::unique_ptr<SymbolFile> best_symfile_up;
if (objfile_sp != nullptr) {
// We need to test the abilities of this section list. So create what it
// would be with this new objfile_sp.
lldb::ModuleSP module_sp(objfile_sp->GetModule());
if (module_sp) {
// Default to the main module section list.
ObjectFile *module_obj_file = module_sp->GetObjectFile();
if (module_obj_file != objfile_sp.get()) {
// Make sure the main object file's sections are created
module_obj_file->GetSectionList();
objfile_sp->CreateSections(*module_sp->GetUnifiedSectionList());
}
}
// TODO: Load any plug-ins in the appropriate plug-in search paths and
// iterate over all of them to find the best one for the job.
uint32_t best_symfile_abilities = 0;
SymbolFileCreateInstance create_callback;
for (uint32_t idx = 0;
(create_callback = PluginManager::GetSymbolFileCreateCallbackAtIndex(
idx)) != nullptr;
++idx) {
std::unique_ptr<SymbolFile> curr_symfile_up(create_callback(objfile_sp));
if (curr_symfile_up) {
const uint32_t sym_file_abilities = curr_symfile_up->GetAbilities();
if (sym_file_abilities > best_symfile_abilities) {
best_symfile_abilities = sym_file_abilities;
best_symfile_up.reset(curr_symfile_up.release());
// If any symbol file parser has all of the abilities, then we should
// just stop looking.
if ((kAllAbilities & sym_file_abilities) == kAllAbilities)
break;
}
}
}
if (best_symfile_up) {
// Let the winning symbol file parser initialize itself more completely
// now that it has been chosen
best_symfile_up->InitializeObject();
}
}
return best_symfile_up.release();
}
llvm::Expected<TypeSystem &>
SymbolFile::GetTypeSystemForLanguage(lldb::LanguageType language) {
auto type_system_or_err =
m_objfile_sp->GetModule()->GetTypeSystemForLanguage(language);
if (type_system_or_err) {
type_system_or_err->SetSymbolFile(this);
}
return type_system_or_err;
}
uint32_t SymbolFile::ResolveSymbolContext(const FileSpec &file_spec,
uint32_t line, bool check_inlines,
lldb::SymbolContextItem resolve_scope,
SymbolContextList &sc_list) {
return 0;
}
void SymbolFile::FindGlobalVariables(ConstString name,
const CompilerDeclContext &parent_decl_ctx,
uint32_t max_matches,
VariableList &variables) {}
void SymbolFile::FindGlobalVariables(const RegularExpression ®ex,
uint32_t max_matches,
VariableList &variables) {}
void SymbolFile::FindFunctions(ConstString name,
const CompilerDeclContext &parent_decl_ctx,
lldb::FunctionNameType name_type_mask,
bool include_inlines,
SymbolContextList &sc_list) {}
void SymbolFile::FindFunctions(const RegularExpression ®ex,
bool include_inlines,
SymbolContextList &sc_list) {}
void SymbolFile::GetMangledNamesForFunction(
const std::string &scope_qualified_name,
std::vector<ConstString> &mangled_names) {
return;
}
void SymbolFile::FindTypes(
ConstString name, const CompilerDeclContext &parent_decl_ctx,
uint32_t max_matches,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeMap &types) {}
void SymbolFile::FindTypes(llvm::ArrayRef<CompilerContext> pattern,
LanguageSet languages,
llvm::DenseSet<SymbolFile *> &searched_symbol_files,
TypeMap &types) {}
void SymbolFile::AssertModuleLock() {
// The code below is too expensive to leave enabled in release builds. It's
// enabled in debug builds or when the correct macro is set.
#if defined(LLDB_CONFIGURATION_DEBUG)
// We assert that we have to module lock by trying to acquire the lock from a
// different thread. Note that we must abort if the result is true to
// guarantee correctness.
assert(std::async(std::launch::async,
[this] { return this->GetModuleMutex().try_lock(); })
.get() == false &&
"Module is not locked");
#endif
}
uint32_t SymbolFile::GetNumCompileUnits() {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
if (!m_compile_units) {
// Create an array of compile unit shared pointers -- which will each
// remain NULL until someone asks for the actual compile unit information.
m_compile_units.emplace(CalculateNumCompileUnits());
}
return m_compile_units->size();
}
CompUnitSP SymbolFile::GetCompileUnitAtIndex(uint32_t idx) {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
uint32_t num = GetNumCompileUnits();
if (idx >= num)
return nullptr;
lldb::CompUnitSP &cu_sp = (*m_compile_units)[idx];
if (!cu_sp)
cu_sp = ParseCompileUnitAtIndex(idx);
return cu_sp;
}
void SymbolFile::SetCompileUnitAtIndex(uint32_t idx, const CompUnitSP &cu_sp) {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
const size_t num_compile_units = GetNumCompileUnits();
assert(idx < num_compile_units);
(void)num_compile_units;
// Fire off an assertion if this compile unit already exists for now. The
// partial parsing should take care of only setting the compile unit
// once, so if this assertion fails, we need to make sure that we don't
// have a race condition, or have a second parse of the same compile
// unit.
assert((*m_compile_units)[idx] == nullptr);
(*m_compile_units)[idx] = cu_sp;
}
Symtab *SymbolFile::GetSymtab() {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
if (m_symtab)
return m_symtab;
// Fetch the symtab from the main object file.
m_symtab = GetMainObjectFile()->GetSymtab();
// Then add our symbols to it.
if (m_symtab)
AddSymbols(*m_symtab);
return m_symtab;
}
void SymbolFile::SectionFileAddressesChanged() {
ObjectFile *module_objfile = GetMainObjectFile();
ObjectFile *symfile_objfile = GetObjectFile();
if (symfile_objfile != module_objfile)
symfile_objfile->SectionFileAddressesChanged();
if (m_symtab)
m_symtab->SectionFileAddressesChanged();
}
void SymbolFile::Dump(Stream &s) {
s.Format("SymbolFile {0} ({1})\n", GetPluginName(),
GetMainObjectFile()->GetFileSpec());
s.PutCString("Types:\n");
m_type_list.Dump(&s, /*show_context*/ false);
s.PutChar('\n');
s.PutCString("Compile units:\n");
if (m_compile_units) {
for (const CompUnitSP &cu_sp : *m_compile_units) {
// We currently only dump the compile units that have been parsed
if (cu_sp)
cu_sp->Dump(&s, /*show_context*/ false);
}
}
s.PutChar('\n');
if (Symtab *symtab = GetSymtab())
symtab->Dump(&s, nullptr, eSortOrderNone);
}
SymbolFile::RegisterInfoResolver::~RegisterInfoResolver() = default;
|