1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
#include <cstdint>
#include <thread>
#include <vector>
#include <queue>
#include <functional>
#include <future>
#include <iostream>
#include <cassert>
class TaskPoolImpl
{
public:
TaskPoolImpl(uint32_t num_threads) :
m_stop(false)
{
for (uint32_t i = 0; i < num_threads; ++i)
m_threads.emplace_back(Worker, this);
}
~TaskPoolImpl()
{
Stop();
}
template<typename F, typename... Args>
std::future<typename std::result_of<F(Args...)>::type>
AddTask(F&& f, Args&&... args)
{
auto task = std::make_shared<std::packaged_task<typename std::result_of<F(Args...)>::type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...));
std::unique_lock<std::mutex> lock(m_tasks_mutex);
assert(!m_stop && "Can't add task to TaskPool after it is stopped");
m_tasks.emplace([task](){ (*task)(); });
lock.unlock();
m_tasks_cv.notify_one();
return task->get_future();
}
void
Stop()
{
std::unique_lock<std::mutex> lock(m_tasks_mutex);
m_stop = true;
m_tasks_mutex.unlock();
m_tasks_cv.notify_all();
for (auto& t : m_threads)
t.join();
}
private:
static void
Worker(TaskPoolImpl* pool)
{
while (true)
{
std::unique_lock<std::mutex> lock(pool->m_tasks_mutex);
if (pool->m_tasks.empty())
pool->m_tasks_cv.wait(lock, [pool](){ return !pool->m_tasks.empty() || pool->m_stop; });
if (pool->m_tasks.empty())
break;
std::function<void()> f = pool->m_tasks.front();
pool->m_tasks.pop();
lock.unlock();
f();
}
}
std::queue<std::function<void()>> m_tasks;
std::mutex m_tasks_mutex;
std::condition_variable m_tasks_cv;
bool m_stop;
std::vector<std::thread> m_threads;
};
class TaskPool
{
public:
// Add a new task to the thread pool and return a std::future belongs for the newly created task.
// The caller of this function have to wait on the future for this task to complete.
template<typename F, typename... Args>
static std::future<typename std::result_of<F(Args...)>::type>
AddTask(F&& f, Args&&... args)
{
return GetImplementation().AddTask(std::forward<F>(f), std::forward<Args>(args)...);
}
// Run all of the specified tasks on the thread pool and wait until all of them are finished
// before returning
template<typename... T>
static void
RunTasks(T&&... t)
{
RunTaskImpl<T...>::Run(std::forward<T>(t)...);
}
private:
static TaskPoolImpl&
GetImplementation()
{
static TaskPoolImpl g_task_pool_impl(std::thread::hardware_concurrency());
return g_task_pool_impl;
}
template<typename... T>
struct RunTaskImpl;
};
template<typename H, typename... T>
struct TaskPool::RunTaskImpl<H, T...>
{
static void
Run(H&& h, T&&... t)
{
auto f = AddTask(std::forward<H>(h));
RunTaskImpl<T...>::Run(std::forward<T>(t)...);
f.wait();
}
};
template<>
struct TaskPool::RunTaskImpl<>
{
static void
Run() {}
};
int main()
{
std::vector<std::future<uint32_t>> tasks;
for (int i = 0; i < 100000; ++i)
{
tasks.emplace_back(TaskPool::AddTask([](int i){
uint32_t s = 0;
for (int j = 0; j <= i; ++j)
s += j;
return s;
},
i));
}
for (auto& it : tasks) // Set breakpoint here
it.wait();
TaskPool::RunTasks(
[]() { return 1; },
[]() { return "aaaa"; }
);
}
|