1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
#include "ThinLtoModuleIndex.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/ExecutionEngine/Orc/SymbolStringPool.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
#include <string>
#define DEBUG_TYPE "thinltojit"
namespace llvm {
namespace orc {
Error ThinLtoModuleIndex::add(StringRef InputPath) {
auto Buffer = errorOrToExpected(MemoryBuffer::getFile(InputPath));
if (!Buffer)
return Buffer.takeError();
Error ParseErr = readModuleSummaryIndex((*Buffer)->getMemBufferRef(),
CombinedSummaryIndex, NextModuleId);
if (ParseErr)
return ParseErr;
#ifndef NDEBUG
auto Paths = getAllModulePaths();
unsigned TotalPaths = Paths.size();
std::sort(Paths.begin(), Paths.end());
Paths.erase(std::unique(Paths.begin(), Paths.end()), Paths.end());
assert(TotalPaths == Paths.size() && "Module paths must be unique");
#endif
++NextModuleId;
return Error::success();
}
std::vector<StringRef> ThinLtoModuleIndex::getAllModulePaths() const {
auto ModuleTable = CombinedSummaryIndex.modulePaths();
std::vector<StringRef> Paths;
Paths.resize(ModuleTable.size());
for (const auto &KV : ModuleTable) {
assert(Paths[KV.second.first].empty() && "IDs are unique and continuous");
Paths[KV.second.first] = KV.first();
}
return Paths;
}
GlobalValueSummary *
ThinLtoModuleIndex::getSummary(GlobalValue::GUID Function) const {
ValueInfo VI = CombinedSummaryIndex.getValueInfo(Function);
if (!VI || VI.getSummaryList().empty())
return nullptr;
// There can be more than one symbol with the same GUID, in the case of same-
// named locals in different but same-named source files that were compiled in
// their respective directories (so the source file name and resulting GUID is
// the same). We avoid this by checking that module paths are unique upon
// add().
//
// TODO: We can still get duplicates on symbols declared with
// attribute((weak)), a GNU extension supported by gcc and clang.
// We should support it by looking for a symbol in the current module
// or in the same module as the caller.
assert(VI.getSummaryList().size() == 1 && "Weak symbols not yet supported");
return VI.getSummaryList().front().get()->getBaseObject();
}
Optional<StringRef>
ThinLtoModuleIndex::getModulePathForSymbol(StringRef Name) const {
if (GlobalValueSummary *S = getSummary(GlobalValue::getGUID(Name)))
return S->modulePath();
return None; // We don't know the symbol.
}
void ThinLtoModuleIndex::scheduleModuleParsingPrelocked(StringRef Path) {
// Once the module was scheduled, we can call takeModule().
auto ScheduledIt = ScheduledModules.find(Path);
if (ScheduledIt != ScheduledModules.end())
return;
auto Worker = [this](std::string Path) {
if (auto TSM = doParseModule(Path)) {
std::lock_guard<std::mutex> Lock(ParsedModulesLock);
ParsedModules[Path] = std::move(*TSM);
LLVM_DEBUG(dbgs() << "Finished parsing module: " << Path << "\n");
} else {
ES.reportError(TSM.takeError());
}
};
LLVM_DEBUG(dbgs() << "Schedule module for parsing: " << Path << "\n");
ScheduledModules[Path] = ParseModuleWorkers.async(Worker, Path.str());
}
ThreadSafeModule ThinLtoModuleIndex::takeModule(StringRef Path) {
std::unique_lock<std::mutex> ParseLock(ParsedModulesLock);
auto ParsedIt = ParsedModules.find(Path);
if (ParsedIt == ParsedModules.end()) {
ParseLock.unlock();
// The module is not ready, wait for the future we stored.
std::unique_lock<std::mutex> ScheduleLock(ScheduledModulesLock);
auto ScheduledIt = ScheduledModules.find(Path);
assert(ScheduledIt != ScheduledModules.end() &&
"Don't call for unscheduled modules");
std::shared_future<void> Future = ScheduledIt->getValue();
ScheduleLock.unlock();
Future.get();
ParseLock.lock();
ParsedIt = ParsedModules.find(Path);
assert(ParsedIt != ParsedModules.end() && "Must be ready now");
}
// We only add each module once. If it's not here anymore, we can skip it.
ThreadSafeModule TSM = std::move(ParsedIt->getValue());
ParsedIt->getValue() = ThreadSafeModule();
return TSM;
}
ThreadSafeModule ThinLtoModuleIndex::parseModuleFromFile(StringRef Path) {
{
std::lock_guard<std::mutex> ScheduleLock(ScheduledModulesLock);
scheduleModuleParsingPrelocked(Path);
}
return takeModule(Path);
}
Expected<ThreadSafeModule> ThinLtoModuleIndex::doParseModule(StringRef Path) {
// TODO: make a SMDiagnosticError class for this
SMDiagnostic Err;
auto Ctx = std::make_unique<LLVMContext>();
auto M = parseIRFile(Path, Err, *Ctx);
if (!M) {
std::string ErrDescription;
{
raw_string_ostream S(ErrDescription);
Err.print("ThinLtoJIT", S);
}
return createStringError(inconvertibleErrorCode(),
"Failed to load module from file '%s' (%s)",
Path.data(), ErrDescription.c_str());
}
return ThreadSafeModule(std::move(M), std::move(Ctx));
}
// We don't filter visited functions. Discovery will often be retriggered
// from the middle of already visited functions and it aims to reach a little
// further each time.
void ThinLtoModuleIndex::discoverCalleeModulePaths(FunctionSummary *S,
unsigned LookaheadLevels) {
// Populate initial worklist
std::vector<FunctionSummary *> Worklist;
addToWorklist(Worklist, S->calls());
unsigned Distance = 0;
while (++Distance < LookaheadLevels) {
// Process current worklist and populate a new one.
std::vector<FunctionSummary *> NextWorklist;
for (FunctionSummary *F : Worklist) {
updatePathRank(F->modulePath(), Distance);
addToWorklist(NextWorklist, F->calls());
}
Worklist = std::move(NextWorklist);
}
// Process the last worklist without filling a new one
for (FunctionSummary *F : Worklist) {
updatePathRank(F->modulePath(), Distance);
}
// Reset counts for known paths (includes both, scheduled and parsed modules).
std::lock_guard<std::mutex> Lock(ScheduledModulesLock);
for (const auto &KV : ScheduledModules) {
PathRank[KV.first()].Count = 0;
}
}
void ThinLtoModuleIndex::addToWorklist(
std::vector<FunctionSummary *> &List,
ArrayRef<FunctionSummary::EdgeTy> Calls) {
for (const auto &Edge : Calls) {
const auto &SummaryList = Edge.first.getSummaryList();
if (!SummaryList.empty()) {
GlobalValueSummary *S = SummaryList.front().get()->getBaseObject();
assert(isa<FunctionSummary>(S) && "Callees must be functions");
List.push_back(cast<FunctionSummary>(S));
}
}
}
// PathRank is global and continuous.
void ThinLtoModuleIndex::updatePathRank(StringRef Path, unsigned Distance) {
auto &Entry = PathRank[Path];
Entry.Count += 1;
Entry.MinDist = std::min(Entry.MinDist, Distance);
assert(Entry.MinDist > 0 && "We want it as a divisor");
}
// TODO: The size of a ThreadPool's task queue is not accessible. It would
// be great to know in order to estimate how many modules we schedule. The
// more we schedule, the less precise is the ranking. The less we schedule,
// the higher the risk for downtime.
std::vector<std::string> ThinLtoModuleIndex::selectNextPaths() {
struct ScorePath {
float Score;
unsigned MinDist;
StringRef Path;
};
std::vector<ScorePath> Candidates;
Candidates.reserve(PathRank.size());
for (const auto &KV : PathRank) {
float Score = static_cast<float>(KV.second.Count) / KV.second.MinDist;
if (Score > .0f) {
Candidates.push_back({Score, KV.second.MinDist, KV.first()});
}
}
// Sort candidates by descending score.
std::sort(Candidates.begin(), Candidates.end(),
[](const ScorePath &LHS, const ScorePath &RHS) {
return LHS.Score > RHS.Score;
});
// Sort highest score candidates by ascending minimal distance.
size_t Selected =
std::min(std::max<size_t>(NumParseModuleThreads, Candidates.size() / 2),
Candidates.size());
std::sort(Candidates.begin(), Candidates.begin() + Selected,
[](const ScorePath &LHS, const ScorePath &RHS) {
return LHS.MinDist < RHS.MinDist;
});
std::vector<std::string> Paths;
Paths.reserve(Selected);
for (unsigned i = 0; i < Selected; i++) {
Paths.push_back(Candidates[i].Path.str());
}
LLVM_DEBUG(dbgs() << "ModuleIndex: select " << Paths.size() << " out of "
<< Candidates.size() << " discovered paths\n");
return Paths;
}
unsigned ThinLtoModuleIndex::getNumDiscoveredModules() const {
// TODO: It would probably be more efficient to track the number of
// unscheduled modules.
unsigned NonNullItems = 0;
for (const auto &KV : PathRank)
if (KV.second.Count > 0)
++NonNullItems;
return NonNullItems;
}
} // namespace orc
} // namespace llvm
|