| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 
 | //=- AArch64InstrAtomics.td - AArch64 Atomic codegen support -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// AArch64 Atomic operand code-gen constructs.
//
//===----------------------------------------------------------------------===//
//===----------------------------------
// Atomic fences
//===----------------------------------
let AddedComplexity = 15, Size = 0 in
def CompilerBarrier : Pseudo<(outs), (ins i32imm:$ordering),
                             [(atomic_fence timm:$ordering, 0)]>, Sched<[]>;
def : Pat<(atomic_fence (i64 4), (timm)), (DMB (i32 0x9))>;
def : Pat<(atomic_fence (timm), (timm)), (DMB (i32 0xb))>;
//===----------------------------------
// Atomic loads
//===----------------------------------
// When they're actually atomic, only one addressing mode (GPR64sp) is
// supported, but when they're relaxed and anything can be used, all the
// standard modes would be valid and may give efficiency gains.
// A atomic load operation that actually needs acquire semantics.
class acquiring_load<PatFrag base>
  : PatFrag<(ops node:$ptr), (base node:$ptr)> {
  let IsAtomic = 1;
  let IsAtomicOrderingAcquireOrStronger = 1;
}
// An atomic load operation that does not need either acquire or release
// semantics.
class relaxed_load<PatFrag base>
  : PatFrag<(ops node:$ptr), (base node:$ptr)> {
  let IsAtomic = 1;
  let IsAtomicOrderingAcquireOrStronger = 0;
}
// 8-bit loads
def : Pat<(acquiring_load<atomic_load_8>  GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_8> (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
                                                     ro_Wextend8:$offset)),
          (LDRBBroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)>;
def : Pat<(relaxed_load<atomic_load_8> (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
                                                     ro_Xextend8:$offset)),
          (LDRBBroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)>;
def : Pat<(relaxed_load<atomic_load_8> (am_indexed8 GPR64sp:$Rn,
                                                    uimm12s1:$offset)),
          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(relaxed_load<atomic_load_8>
               (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
// 16-bit loads
def : Pat<(acquiring_load<atomic_load_16> GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
                                                       ro_Wextend16:$extend)),
          (LDRHHroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
def : Pat<(relaxed_load<atomic_load_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
                                                       ro_Xextend16:$extend)),
          (LDRHHroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
def : Pat<(relaxed_load<atomic_load_16> (am_indexed16 GPR64sp:$Rn,
                                                      uimm12s2:$offset)),
          (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(relaxed_load<atomic_load_16>
               (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
// 32-bit loads
def : Pat<(acquiring_load<atomic_load_32> GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
                                                       ro_Wextend32:$extend)),
          (LDRWroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
def : Pat<(relaxed_load<atomic_load_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
                                                       ro_Xextend32:$extend)),
          (LDRWroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
def : Pat<(relaxed_load<atomic_load_32> (am_indexed32 GPR64sp:$Rn,
                                                      uimm12s4:$offset)),
          (LDRWui GPR64sp:$Rn, uimm12s4:$offset)>;
def : Pat<(relaxed_load<atomic_load_32>
               (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
          (LDURWi GPR64sp:$Rn, simm9:$offset)>;
// 64-bit loads
def : Pat<(acquiring_load<atomic_load_64> GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
                                                       ro_Wextend64:$extend)),
          (LDRXroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
def : Pat<(relaxed_load<atomic_load_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
                                                       ro_Xextend64:$extend)),
          (LDRXroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
def : Pat<(relaxed_load<atomic_load_64> (am_indexed64 GPR64sp:$Rn,
                                                      uimm12s8:$offset)),
          (LDRXui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(relaxed_load<atomic_load_64>
               (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
          (LDURXi GPR64sp:$Rn, simm9:$offset)>;
//===----------------------------------
// Atomic stores
//===----------------------------------
// When they're actually atomic, only one addressing mode (GPR64sp) is
// supported, but when they're relaxed and anything can be used, all the
// standard modes would be valid and may give efficiency gains.
// A store operation that actually needs release semantics.
class releasing_store<PatFrag base>
  : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
  let IsAtomic = 1;
  let IsAtomicOrderingReleaseOrStronger = 1;
}
// An atomic store operation that doesn't actually need to be atomic on AArch64.
class relaxed_store<PatFrag base>
  : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
  let IsAtomic = 1;
  let IsAtomicOrderingReleaseOrStronger = 0;
}
// 8-bit stores
def : Pat<(releasing_store<atomic_store_8> GPR64sp:$ptr, GPR32:$val),
          (STLRB GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_8>
               (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
               GPR32:$val),
          (STRBBroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)>;
def : Pat<(relaxed_store<atomic_store_8>
               (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
               GPR32:$val),
          (STRBBroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)>;
def : Pat<(relaxed_store<atomic_store_8>
               (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), GPR32:$val),
          (STRBBui GPR32:$val, GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(relaxed_store<atomic_store_8>
               (am_unscaled8 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
          (STURBBi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
// 16-bit stores
def : Pat<(releasing_store<atomic_store_16> GPR64sp:$ptr, GPR32:$val),
          (STLRH GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
                                                         ro_Wextend16:$extend),
                                          GPR32:$val),
          (STRHHroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
def : Pat<(relaxed_store<atomic_store_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
                                                         ro_Xextend16:$extend),
                                          GPR32:$val),
          (STRHHroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
def : Pat<(relaxed_store<atomic_store_16>
              (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), GPR32:$val),
          (STRHHui GPR32:$val, GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(relaxed_store<atomic_store_16>
               (am_unscaled16 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
          (STURHHi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
// 32-bit stores
def : Pat<(releasing_store<atomic_store_32> GPR64sp:$ptr, GPR32:$val),
          (STLRW GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
                                                         ro_Wextend32:$extend),
                                          GPR32:$val),
          (STRWroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
def : Pat<(relaxed_store<atomic_store_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
                                                         ro_Xextend32:$extend),
                                          GPR32:$val),
          (STRWroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
def : Pat<(relaxed_store<atomic_store_32>
              (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), GPR32:$val),
          (STRWui GPR32:$val, GPR64sp:$Rn, uimm12s4:$offset)>;
def : Pat<(relaxed_store<atomic_store_32>
               (am_unscaled32 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
          (STURWi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
// 64-bit stores
def : Pat<(releasing_store<atomic_store_64> GPR64sp:$ptr, GPR64:$val),
          (STLRX GPR64:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
                                                         ro_Wextend16:$extend),
                                          GPR64:$val),
          (STRXroW GPR64:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
def : Pat<(relaxed_store<atomic_store_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
                                                         ro_Xextend16:$extend),
                                          GPR64:$val),
          (STRXroX GPR64:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
def : Pat<(relaxed_store<atomic_store_64>
              (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset), GPR64:$val),
          (STRXui GPR64:$val, GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(relaxed_store<atomic_store_64>
               (am_unscaled64 GPR64sp:$Rn, simm9:$offset), GPR64:$val),
          (STURXi GPR64:$val, GPR64sp:$Rn, simm9:$offset)>;
//===----------------------------------
// Low-level exclusive operations
//===----------------------------------
// Load-exclusives.
def ldxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
}
def ldxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
}
def ldxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
}
def ldxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
}
def : Pat<(ldxr_1 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
def : Pat<(ldxr_2 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
def : Pat<(ldxr_4 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
def : Pat<(ldxr_8 GPR64sp:$addr), (LDXRX GPR64sp:$addr)>;
def : Pat<(and (ldxr_1 GPR64sp:$addr), 0xff),
          (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldxr_2 GPR64sp:$addr), 0xffff),
          (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldxr_4 GPR64sp:$addr), 0xffffffff),
          (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
// Load-exclusives.
def ldaxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
}
def ldaxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
}
def ldaxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
}
def ldaxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
}
def : Pat<(ldaxr_1 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
def : Pat<(ldaxr_2 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
def : Pat<(ldaxr_4 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
def : Pat<(ldaxr_8 GPR64sp:$addr), (LDAXRX GPR64sp:$addr)>;
def : Pat<(and (ldaxr_1 GPR64sp:$addr), 0xff),
          (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldaxr_2 GPR64sp:$addr), 0xffff),
          (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldaxr_4 GPR64sp:$addr), 0xffffffff),
          (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
// Store-exclusives.
def stxr_1 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
}
def stxr_2 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
}
def stxr_4 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
}
def stxr_8 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
}
def : Pat<(stxr_1 GPR64:$val, GPR64sp:$addr),
          (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_2 GPR64:$val, GPR64sp:$addr),
          (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_4 GPR64:$val, GPR64sp:$addr),
          (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_8 GPR64:$val, GPR64sp:$addr),
          (STXRX GPR64:$val, GPR64sp:$addr)>;
def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
          (STXRB GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
          (STXRH GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stxr_4 (zext GPR32:$val), GPR64sp:$addr),
          (STXRW GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
          (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
          (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
          (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
// Store-release-exclusives.
def stlxr_1 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stlxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
}
def stlxr_2 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stlxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
}
def stlxr_4 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stlxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
}
def stlxr_8 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stlxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
}
def : Pat<(stlxr_1 GPR64:$val, GPR64sp:$addr),
          (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_2 GPR64:$val, GPR64sp:$addr),
          (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_4 GPR64:$val, GPR64sp:$addr),
          (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_8 GPR64:$val, GPR64sp:$addr),
          (STLXRX GPR64:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
          (STLXRB GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
          (STLXRH GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_4 (zext GPR32:$val), GPR64sp:$addr),
          (STLXRW GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
          (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
          (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
          (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
// And clear exclusive.
def : Pat<(int_aarch64_clrex), (CLREX 0xf)>;
//===----------------------------------
// Atomic cmpxchg for -O0
//===----------------------------------
// The fast register allocator used during -O0 inserts spills to cover any VRegs
// live across basic block boundaries. When this happens between an LDXR and an
// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
// fail.
// Unfortunately, this means we have to have an alternative (expanded
// post-regalloc) path for -O0 compilations. Fortunately this path can be
// significantly more naive than the standard expansion: we conservatively
// assume seq_cst, strong cmpxchg and omit clrex on failure.
let Constraints = "@earlyclobber $Rd,@earlyclobber $scratch",
    mayLoad = 1, mayStore = 1 in {
def CMP_SWAP_8 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
                        (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
                 Sched<[WriteAtomic]>;
def CMP_SWAP_16 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
                         (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
                  Sched<[WriteAtomic]>;
def CMP_SWAP_32 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
                         (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
                  Sched<[WriteAtomic]>;
def CMP_SWAP_64 : Pseudo<(outs GPR64:$Rd, GPR32:$scratch),
                         (ins GPR64:$addr, GPR64:$desired, GPR64:$new), []>,
                  Sched<[WriteAtomic]>;
}
let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi,@earlyclobber $scratch",
    mayLoad = 1, mayStore = 1 in
def CMP_SWAP_128 : Pseudo<(outs GPR64:$RdLo, GPR64:$RdHi, GPR32:$scratch),
                          (ins GPR64:$addr, GPR64:$desiredLo, GPR64:$desiredHi,
                               GPR64:$newLo, GPR64:$newHi), []>,
                   Sched<[WriteAtomic]>;
// v8.1 Atomic instructions:
let Predicates = [HasLSE] in {
  defm : LDOPregister_patterns<"LDADD", "atomic_load_add">;
  defm : LDOPregister_patterns<"LDSET", "atomic_load_or">;
  defm : LDOPregister_patterns<"LDEOR", "atomic_load_xor">;
  defm : LDOPregister_patterns<"LDCLR", "atomic_load_clr">;
  defm : LDOPregister_patterns<"LDSMAX", "atomic_load_max">;
  defm : LDOPregister_patterns<"LDSMIN", "atomic_load_min">;
  defm : LDOPregister_patterns<"LDUMAX", "atomic_load_umax">;
  defm : LDOPregister_patterns<"LDUMIN", "atomic_load_umin">;
  defm : LDOPregister_patterns<"SWP", "atomic_swap">;
  defm : CASregister_patterns<"CAS", "atomic_cmp_swap">;
  // These two patterns are only needed for global isel, selection dag isel
  // converts atomic load-sub into a sub and atomic load-add, and likewise for
  // and -> clr.
  defm : LDOPregister_patterns_mod<"LDADD", "atomic_load_sub", "SUB">;
  defm : LDOPregister_patterns_mod<"LDCLR", "atomic_load_and", "ORN">;
}
 |