1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
//=- AArch64MachineFunctionInfo.h - AArch64 machine function info -*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares AArch64-specific per-machine-function information.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64MACHINEFUNCTIONINFO_H
#define LLVM_LIB_TARGET_AARCH64_AARCH64MACHINEFUNCTIONINFO_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCLinkerOptimizationHint.h"
#include <cassert>
namespace llvm {
namespace yaml {
struct AArch64FunctionInfo;
} // end namespace yaml
class MachineInstr;
/// AArch64FunctionInfo - This class is derived from MachineFunctionInfo and
/// contains private AArch64-specific information for each MachineFunction.
class AArch64FunctionInfo final : public MachineFunctionInfo {
/// Number of bytes of arguments this function has on the stack. If the callee
/// is expected to restore the argument stack this should be a multiple of 16,
/// all usable during a tail call.
///
/// The alternative would forbid tail call optimisation in some cases: if we
/// want to transfer control from a function with 8-bytes of stack-argument
/// space to a function with 16-bytes then misalignment of this value would
/// make a stack adjustment necessary, which could not be undone by the
/// callee.
unsigned BytesInStackArgArea = 0;
/// The number of bytes to restore to deallocate space for incoming
/// arguments. Canonically 0 in the C calling convention, but non-zero when
/// callee is expected to pop the args.
unsigned ArgumentStackToRestore = 0;
/// HasStackFrame - True if this function has a stack frame. Set by
/// determineCalleeSaves().
bool HasStackFrame = false;
/// Amount of stack frame size, not including callee-saved registers.
uint64_t LocalStackSize = 0;
/// The start and end frame indices for the SVE callee saves.
int MinSVECSFrameIndex = 0;
int MaxSVECSFrameIndex = 0;
/// Amount of stack frame size used for saving callee-saved registers.
unsigned CalleeSavedStackSize = 0;
unsigned SVECalleeSavedStackSize = 0;
bool HasCalleeSavedStackSize = false;
/// Number of TLS accesses using the special (combinable)
/// _TLS_MODULE_BASE_ symbol.
unsigned NumLocalDynamicTLSAccesses = 0;
/// FrameIndex for start of varargs area for arguments passed on the
/// stack.
int VarArgsStackIndex = 0;
/// FrameIndex for start of varargs area for arguments passed in
/// general purpose registers.
int VarArgsGPRIndex = 0;
/// Size of the varargs area for arguments passed in general purpose
/// registers.
unsigned VarArgsGPRSize = 0;
/// FrameIndex for start of varargs area for arguments passed in
/// floating-point registers.
int VarArgsFPRIndex = 0;
/// Size of the varargs area for arguments passed in floating-point
/// registers.
unsigned VarArgsFPRSize = 0;
/// True if this function has a subset of CSRs that is handled explicitly via
/// copies.
bool IsSplitCSR = false;
/// True when the stack gets realigned dynamically because the size of stack
/// frame is unknown at compile time. e.g., in case of VLAs.
bool StackRealigned = false;
/// True when the callee-save stack area has unused gaps that may be used for
/// other stack allocations.
bool CalleeSaveStackHasFreeSpace = false;
/// SRetReturnReg - sret lowering includes returning the value of the
/// returned struct in a register. This field holds the virtual register into
/// which the sret argument is passed.
unsigned SRetReturnReg = 0;
/// SVE stack size (for predicates and data vectors) are maintained here
/// rather than in FrameInfo, as the placement and Stack IDs are target
/// specific.
uint64_t StackSizeSVE = 0;
/// HasCalculatedStackSizeSVE indicates whether StackSizeSVE is valid.
bool HasCalculatedStackSizeSVE = false;
/// Has a value when it is known whether or not the function uses a
/// redzone, and no value otherwise.
/// Initialized during frame lowering, unless the function has the noredzone
/// attribute, in which case it is set to false at construction.
Optional<bool> HasRedZone;
/// ForwardedMustTailRegParms - A list of virtual and physical registers
/// that must be forwarded to every musttail call.
SmallVector<ForwardedRegister, 1> ForwardedMustTailRegParms;
// Offset from SP-at-entry to the tagged base pointer.
// Tagged base pointer is set up to point to the first (lowest address) tagged
// stack slot.
unsigned TaggedBasePointerOffset = 0;
/// OutliningStyle denotes, if a function was outined, how it was outlined,
/// e.g. Tail Call, Thunk, or Function if none apply.
Optional<std::string> OutliningStyle;
public:
AArch64FunctionInfo() = default;
explicit AArch64FunctionInfo(MachineFunction &MF) {
(void)MF;
// If we already know that the function doesn't have a redzone, set
// HasRedZone here.
if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
HasRedZone = false;
}
void initializeBaseYamlFields(const yaml::AArch64FunctionInfo &YamlMFI);
unsigned getBytesInStackArgArea() const { return BytesInStackArgArea; }
void setBytesInStackArgArea(unsigned bytes) { BytesInStackArgArea = bytes; }
unsigned getArgumentStackToRestore() const { return ArgumentStackToRestore; }
void setArgumentStackToRestore(unsigned bytes) {
ArgumentStackToRestore = bytes;
}
bool hasCalculatedStackSizeSVE() const { return HasCalculatedStackSizeSVE; }
void setStackSizeSVE(uint64_t S) {
HasCalculatedStackSizeSVE = true;
StackSizeSVE = S;
}
uint64_t getStackSizeSVE() const { return StackSizeSVE; }
bool hasStackFrame() const { return HasStackFrame; }
void setHasStackFrame(bool s) { HasStackFrame = s; }
bool isStackRealigned() const { return StackRealigned; }
void setStackRealigned(bool s) { StackRealigned = s; }
bool hasCalleeSaveStackFreeSpace() const {
return CalleeSaveStackHasFreeSpace;
}
void setCalleeSaveStackHasFreeSpace(bool s) {
CalleeSaveStackHasFreeSpace = s;
}
bool isSplitCSR() const { return IsSplitCSR; }
void setIsSplitCSR(bool s) { IsSplitCSR = s; }
void setLocalStackSize(uint64_t Size) { LocalStackSize = Size; }
uint64_t getLocalStackSize() const { return LocalStackSize; }
void setOutliningStyle(std::string Style) { OutliningStyle = Style; }
Optional<std::string> getOutliningStyle() const { return OutliningStyle; }
void setCalleeSavedStackSize(unsigned Size) {
CalleeSavedStackSize = Size;
HasCalleeSavedStackSize = true;
}
// When CalleeSavedStackSize has not been set (for example when
// some MachineIR pass is run in isolation), then recalculate
// the CalleeSavedStackSize directly from the CalleeSavedInfo.
// Note: This information can only be recalculated after PEI
// has assigned offsets to the callee save objects.
unsigned getCalleeSavedStackSize(const MachineFrameInfo &MFI) const {
bool ValidateCalleeSavedStackSize = false;
#ifndef NDEBUG
// Make sure the calculated size derived from the CalleeSavedInfo
// equals the cached size that was calculated elsewhere (e.g. in
// determineCalleeSaves).
ValidateCalleeSavedStackSize = HasCalleeSavedStackSize;
#endif
if (!HasCalleeSavedStackSize || ValidateCalleeSavedStackSize) {
assert(MFI.isCalleeSavedInfoValid() && "CalleeSavedInfo not calculated");
if (MFI.getCalleeSavedInfo().empty())
return 0;
int64_t MinOffset = std::numeric_limits<int64_t>::max();
int64_t MaxOffset = std::numeric_limits<int64_t>::min();
for (const auto &Info : MFI.getCalleeSavedInfo()) {
int FrameIdx = Info.getFrameIdx();
if (MFI.getStackID(FrameIdx) != TargetStackID::Default)
continue;
int64_t Offset = MFI.getObjectOffset(FrameIdx);
int64_t ObjSize = MFI.getObjectSize(FrameIdx);
MinOffset = std::min<int64_t>(Offset, MinOffset);
MaxOffset = std::max<int64_t>(Offset + ObjSize, MaxOffset);
}
unsigned Size = alignTo(MaxOffset - MinOffset, 16);
assert((!HasCalleeSavedStackSize || getCalleeSavedStackSize() == Size) &&
"Invalid size calculated for callee saves");
return Size;
}
return getCalleeSavedStackSize();
}
unsigned getCalleeSavedStackSize() const {
assert(HasCalleeSavedStackSize &&
"CalleeSavedStackSize has not been calculated");
return CalleeSavedStackSize;
}
// Saves the CalleeSavedStackSize for SVE vectors in 'scalable bytes'
void setSVECalleeSavedStackSize(unsigned Size) {
SVECalleeSavedStackSize = Size;
}
unsigned getSVECalleeSavedStackSize() const {
return SVECalleeSavedStackSize;
}
void setMinMaxSVECSFrameIndex(int Min, int Max) {
MinSVECSFrameIndex = Min;
MaxSVECSFrameIndex = Max;
}
int getMinSVECSFrameIndex() const { return MinSVECSFrameIndex; }
int getMaxSVECSFrameIndex() const { return MaxSVECSFrameIndex; }
void incNumLocalDynamicTLSAccesses() { ++NumLocalDynamicTLSAccesses; }
unsigned getNumLocalDynamicTLSAccesses() const {
return NumLocalDynamicTLSAccesses;
}
Optional<bool> hasRedZone() const { return HasRedZone; }
void setHasRedZone(bool s) { HasRedZone = s; }
int getVarArgsStackIndex() const { return VarArgsStackIndex; }
void setVarArgsStackIndex(int Index) { VarArgsStackIndex = Index; }
int getVarArgsGPRIndex() const { return VarArgsGPRIndex; }
void setVarArgsGPRIndex(int Index) { VarArgsGPRIndex = Index; }
unsigned getVarArgsGPRSize() const { return VarArgsGPRSize; }
void setVarArgsGPRSize(unsigned Size) { VarArgsGPRSize = Size; }
int getVarArgsFPRIndex() const { return VarArgsFPRIndex; }
void setVarArgsFPRIndex(int Index) { VarArgsFPRIndex = Index; }
unsigned getVarArgsFPRSize() const { return VarArgsFPRSize; }
void setVarArgsFPRSize(unsigned Size) { VarArgsFPRSize = Size; }
unsigned getSRetReturnReg() const { return SRetReturnReg; }
void setSRetReturnReg(unsigned Reg) { SRetReturnReg = Reg; }
unsigned getJumpTableEntrySize(int Idx) const {
auto It = JumpTableEntryInfo.find(Idx);
if (It != JumpTableEntryInfo.end())
return It->second.first;
return 4;
}
MCSymbol *getJumpTableEntryPCRelSymbol(int Idx) const {
return JumpTableEntryInfo.find(Idx)->second.second;
}
void setJumpTableEntryInfo(int Idx, unsigned Size, MCSymbol *PCRelSym) {
JumpTableEntryInfo[Idx] = std::make_pair(Size, PCRelSym);
}
using SetOfInstructions = SmallPtrSet<const MachineInstr *, 16>;
const SetOfInstructions &getLOHRelated() const { return LOHRelated; }
// Shortcuts for LOH related types.
class MILOHDirective {
MCLOHType Kind;
/// Arguments of this directive. Order matters.
SmallVector<const MachineInstr *, 3> Args;
public:
using LOHArgs = ArrayRef<const MachineInstr *>;
MILOHDirective(MCLOHType Kind, LOHArgs Args)
: Kind(Kind), Args(Args.begin(), Args.end()) {
assert(isValidMCLOHType(Kind) && "Invalid LOH directive type!");
}
MCLOHType getKind() const { return Kind; }
LOHArgs getArgs() const { return Args; }
};
using MILOHArgs = MILOHDirective::LOHArgs;
using MILOHContainer = SmallVector<MILOHDirective, 32>;
const MILOHContainer &getLOHContainer() const { return LOHContainerSet; }
/// Add a LOH directive of this @p Kind and this @p Args.
void addLOHDirective(MCLOHType Kind, MILOHArgs Args) {
LOHContainerSet.push_back(MILOHDirective(Kind, Args));
LOHRelated.insert(Args.begin(), Args.end());
}
SmallVectorImpl<ForwardedRegister> &getForwardedMustTailRegParms() {
return ForwardedMustTailRegParms;
}
unsigned getTaggedBasePointerOffset() const {
return TaggedBasePointerOffset;
}
void setTaggedBasePointerOffset(unsigned Offset) {
TaggedBasePointerOffset = Offset;
}
private:
// Hold the lists of LOHs.
MILOHContainer LOHContainerSet;
SetOfInstructions LOHRelated;
DenseMap<int, std::pair<unsigned, MCSymbol *>> JumpTableEntryInfo;
};
namespace yaml {
struct AArch64FunctionInfo final : public yaml::MachineFunctionInfo {
Optional<bool> HasRedZone;
AArch64FunctionInfo() = default;
AArch64FunctionInfo(const llvm::AArch64FunctionInfo &MFI);
void mappingImpl(yaml::IO &YamlIO) override;
~AArch64FunctionInfo() = default;
};
template <> struct MappingTraits<AArch64FunctionInfo> {
static void mapping(IO &YamlIO, AArch64FunctionInfo &MFI) {
YamlIO.mapOptional("hasRedZone", MFI.HasRedZone);
}
};
} // end namespace yaml
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AARCH64_AARCH64MACHINEFUNCTIONINFO_H
|