1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
//===-- VEInstrFormats.td - VE Instruction Formats ---------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// SX-Aurora uses little endian, but instructions are encoded little bit
// different manner. Therefore, we need to tranlate the address of each
// bitfield described in ISA documentation like below.
//
// ISA | InstrFormats.td
// ---------------------------
// 0-7 => 63-56
// 8 => 55
// 32-63 => 31-0
//===----------------------------------------------------------------------===//
// Instruction Format
//===----------------------------------------------------------------------===//
class InstVE<dag outs, dag ins, string asmstr, list<dag> pattern>
: Instruction {
field bits<64> Inst;
let Namespace = "VE";
let Size = 8;
bits<8> op;
let Inst{63-56} = op;
dag OutOperandList = outs;
dag InOperandList = ins;
let AsmString = asmstr;
let Pattern = pattern;
let DecoderNamespace = "VE";
field bits<64> SoftFail = 0;
}
//-----------------------------------------------------------------------------
// Section 5.1 RM Type
//
// RM type has sx, sy, sz, and imm32.
// The effective address is generated by sz + sy + imm32.
//-----------------------------------------------------------------------------
class RM<bits<8>opVal, dag outs, dag ins, string asmstr, list<dag> pattern = []>
: InstVE<outs, ins, asmstr, pattern> {
bits<1> cx = 0;
bits<7> sx;
bits<1> cy = 1;
bits<7> sz; // defines sz prior to sy to assign from sz
bits<7> sy;
bits<1> cz = 1;
bits<32> imm32;
let op = opVal;
let Inst{55} = cx;
let Inst{54-48} = sx;
let Inst{47} = cy;
let Inst{46-40} = sy;
let Inst{39} = cz;
let Inst{38-32} = sz;
let Inst{31-0} = imm32;
}
//-----------------------------------------------------------------------------
// Section 5.2 RRM Type
//
// RRM type is identical to RM, but the effective address is generated
// by sz + imm32. The sy field is used by other purposes.
//-----------------------------------------------------------------------------
class RRM<bits<8>opVal, dag outs, dag ins, string asmstr,
list<dag> pattern = []>
: RM<opVal, outs, ins, asmstr, pattern>;
// RRMHM type is to load/store host memory
// It is similar to RRM and not use sy.
class RRMHM<bits<8>opVal, dag outs, dag ins, string asmstr,
list<dag> pattern = []>
: RRM<opVal, outs, ins, asmstr, pattern> {
bits<2> ry = 0;
let cy = 0;
let sy{6-2} = 0;
let sy{1-0} = ry;
}
//-----------------------------------------------------------------------------
// Section 5.3 CF Type
//
// CF type is used for control flow.
//-----------------------------------------------------------------------------
class CF<bits<8>opVal, dag outs, dag ins, string asmstr, list<dag> pattern = []>
: InstVE<outs, ins, asmstr, pattern> {
bits<1> cx = 0;
bits<1> cx2 = 0;
bits<2> bpf = 0;
bits<4> cf;
bits<1> cy = 1;
bits<7> sy;
bits<1> cz = 1;
bits<7> sz;
bits<32> imm32;
let op = opVal;
let Inst{55} = cx;
let Inst{54} = cx2;
let Inst{53-52} = bpf;
let Inst{51-48} = cf;
let Inst{47} = cy;
let Inst{46-40} = sy;
let Inst{39} = cz;
let Inst{38-32} = sz;
let Inst{31-0} = imm32;
}
//-----------------------------------------------------------------------------
// Section 5.4 RR Type
//
// RR type is for generic arithmetic instructions.
//-----------------------------------------------------------------------------
class RR<bits<8>opVal, dag outs, dag ins, string asmstr, list<dag> pattern = []>
: InstVE<outs, ins, asmstr, pattern> {
bits<1> cx = 0;
bits<7> sx;
bits<1> cy = 1;
bits<7> sy;
bits<1> cz = 1;
bits<7> sz; // m field places at the top sz field
bits<8> vx = 0;
bits<8> vz = 0;
bits<1> cw = 0;
bits<1> cw2 = 0;
bits<4> cfw = 0;
let op = opVal;
let Inst{55} = cx;
let Inst{54-48} = sx;
let Inst{47} = cy;
let Inst{46-40} = sy;
let Inst{39} = cz;
let Inst{38-32} = sz;
let Inst{31-24} = vx;
let Inst{23-16} = 0;
let Inst{15-8} = vz;
let Inst{7} = cw;
let Inst{6} = cw2;
let Inst{5-4} = 0;
let Inst{3-0} = cfw;
}
// RRFENCE type is special RR type for a FENCE instruction.
class RRFENCE<bits<8>opVal, dag outs, dag ins, string asmstr,
list<dag> pattern = []>
: InstVE<outs, ins, asmstr, pattern> {
bits<1> avo = 0;
bits<1> lf = 0;
bits<1> sf = 0;
bits<1> c2 = 0;
bits<1> c1 = 0;
bits<1> c0 = 0;
let op = opVal;
let Inst{55} = avo;
let Inst{54-50} = 0;
let Inst{49} = lf;
let Inst{48} = sf;
let Inst{47-43} = 0;
let Inst{42} = c2;
let Inst{41} = c1;
let Inst{40} = c0;
let Inst{39-0} = 0;
}
//-----------------------------------------------------------------------------
// Section 5.5 RW Type
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Section 5.6 RVM Type
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Section 5.7 RV Type
//-----------------------------------------------------------------------------
// Pseudo instructions.
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern = []>
: InstVE<outs, ins, asmstr, pattern> {
let isCodeGenOnly = 1;
let isPseudo = 1;
}
|