1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
//===- X86RegisterBankInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for X86.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "X86RegisterBankInfo.h"
#include "X86InstrInfo.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#define GET_TARGET_REGBANK_IMPL
#include "X86GenRegisterBank.inc"
using namespace llvm;
// This file will be TableGen'ed at some point.
#define GET_TARGET_REGBANK_INFO_IMPL
#include "X86GenRegisterBankInfo.def"
X86RegisterBankInfo::X86RegisterBankInfo(const TargetRegisterInfo &TRI)
: X86GenRegisterBankInfo() {
// validate RegBank initialization.
const RegisterBank &RBGPR = getRegBank(X86::GPRRegBankID);
(void)RBGPR;
assert(&X86::GPRRegBank == &RBGPR && "Incorrect RegBanks inizalization.");
// The GPR register bank is fully defined by all the registers in
// GR64 + its subclasses.
assert(RBGPR.covers(*TRI.getRegClass(X86::GR64RegClassID)) &&
"Subclass not added?");
assert(RBGPR.getSize() == 64 && "GPRs should hold up to 64-bit");
}
const RegisterBank &
X86RegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC,
LLT) const {
if (X86::GR8RegClass.hasSubClassEq(&RC) ||
X86::GR16RegClass.hasSubClassEq(&RC) ||
X86::GR32RegClass.hasSubClassEq(&RC) ||
X86::GR64RegClass.hasSubClassEq(&RC) ||
X86::LOW32_ADDR_ACCESSRegClass.hasSubClassEq(&RC) ||
X86::LOW32_ADDR_ACCESS_RBPRegClass.hasSubClassEq(&RC))
return getRegBank(X86::GPRRegBankID);
if (X86::FR32XRegClass.hasSubClassEq(&RC) ||
X86::FR64XRegClass.hasSubClassEq(&RC) ||
X86::VR128XRegClass.hasSubClassEq(&RC) ||
X86::VR256XRegClass.hasSubClassEq(&RC) ||
X86::VR512RegClass.hasSubClassEq(&RC))
return getRegBank(X86::VECRRegBankID);
llvm_unreachable("Unsupported register kind yet.");
}
X86GenRegisterBankInfo::PartialMappingIdx
X86GenRegisterBankInfo::getPartialMappingIdx(const LLT &Ty, bool isFP) {
if ((Ty.isScalar() && !isFP) || Ty.isPointer()) {
switch (Ty.getSizeInBits()) {
case 1:
case 8:
return PMI_GPR8;
case 16:
return PMI_GPR16;
case 32:
return PMI_GPR32;
case 64:
return PMI_GPR64;
case 128:
return PMI_VEC128;
break;
default:
llvm_unreachable("Unsupported register size.");
}
} else if (Ty.isScalar()) {
switch (Ty.getSizeInBits()) {
case 32:
return PMI_FP32;
case 64:
return PMI_FP64;
case 128:
return PMI_VEC128;
default:
llvm_unreachable("Unsupported register size.");
}
} else {
switch (Ty.getSizeInBits()) {
case 128:
return PMI_VEC128;
case 256:
return PMI_VEC256;
case 512:
return PMI_VEC512;
default:
llvm_unreachable("Unsupported register size.");
}
}
return PMI_None;
}
void X86RegisterBankInfo::getInstrPartialMappingIdxs(
const MachineInstr &MI, const MachineRegisterInfo &MRI, const bool isFP,
SmallVectorImpl<PartialMappingIdx> &OpRegBankIdx) {
unsigned NumOperands = MI.getNumOperands();
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
auto &MO = MI.getOperand(Idx);
if (!MO.isReg())
OpRegBankIdx[Idx] = PMI_None;
else
OpRegBankIdx[Idx] = getPartialMappingIdx(MRI.getType(MO.getReg()), isFP);
}
}
bool X86RegisterBankInfo::getInstrValueMapping(
const MachineInstr &MI,
const SmallVectorImpl<PartialMappingIdx> &OpRegBankIdx,
SmallVectorImpl<const ValueMapping *> &OpdsMapping) {
unsigned NumOperands = MI.getNumOperands();
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
if (!MI.getOperand(Idx).isReg())
continue;
auto Mapping = getValueMapping(OpRegBankIdx[Idx], 1);
if (!Mapping->isValid())
return false;
OpdsMapping[Idx] = Mapping;
}
return true;
}
const RegisterBankInfo::InstructionMapping &
X86RegisterBankInfo::getSameOperandsMapping(const MachineInstr &MI,
bool isFP) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned NumOperands = MI.getNumOperands();
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (NumOperands != 3 || (Ty != MRI.getType(MI.getOperand(1).getReg())) ||
(Ty != MRI.getType(MI.getOperand(2).getReg())))
llvm_unreachable("Unsupported operand mapping yet.");
auto Mapping = getValueMapping(getPartialMappingIdx(Ty, isFP), 3);
return getInstructionMapping(DefaultMappingID, 1, Mapping, NumOperands);
}
const RegisterBankInfo::InstructionMapping &
X86RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned Opc = MI.getOpcode();
// Try the default logic for non-generic instructions that are either copies
// or already have some operands assigned to banks.
if (!isPreISelGenericOpcode(Opc) || Opc == TargetOpcode::G_PHI) {
const InstructionMapping &Mapping = getInstrMappingImpl(MI);
if (Mapping.isValid())
return Mapping;
}
switch (Opc) {
case TargetOpcode::G_ADD:
case TargetOpcode::G_SUB:
case TargetOpcode::G_MUL:
return getSameOperandsMapping(MI, false);
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
return getSameOperandsMapping(MI, true);
case TargetOpcode::G_SHL:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_ASHR: {
unsigned NumOperands = MI.getNumOperands();
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
auto Mapping = getValueMapping(getPartialMappingIdx(Ty, false), 3);
return getInstructionMapping(DefaultMappingID, 1, Mapping, NumOperands);
}
default:
break;
}
unsigned NumOperands = MI.getNumOperands();
SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
switch (Opc) {
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FCONSTANT:
// Instruction having only floating-point operands (all scalars in VECRReg)
getInstrPartialMappingIdxs(MI, MRI, /* isFP */ true, OpRegBankIdx);
break;
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_FPTOSI: {
// Some of the floating-point instructions have mixed GPR and FP operands:
// fine-tune the computed mapping.
auto &Op0 = MI.getOperand(0);
auto &Op1 = MI.getOperand(1);
const LLT Ty0 = MRI.getType(Op0.getReg());
const LLT Ty1 = MRI.getType(Op1.getReg());
bool FirstArgIsFP = Opc == TargetOpcode::G_SITOFP;
bool SecondArgIsFP = Opc == TargetOpcode::G_FPTOSI;
OpRegBankIdx[0] = getPartialMappingIdx(Ty0, /* isFP */ FirstArgIsFP);
OpRegBankIdx[1] = getPartialMappingIdx(Ty1, /* isFP */ SecondArgIsFP);
break;
}
case TargetOpcode::G_FCMP: {
LLT Ty1 = MRI.getType(MI.getOperand(2).getReg());
LLT Ty2 = MRI.getType(MI.getOperand(3).getReg());
(void)Ty2;
assert(Ty1.getSizeInBits() == Ty2.getSizeInBits() &&
"Mismatched operand sizes for G_FCMP");
unsigned Size = Ty1.getSizeInBits();
(void)Size;
assert((Size == 32 || Size == 64) && "Unsupported size for G_FCMP");
auto FpRegBank = getPartialMappingIdx(Ty1, /* isFP */ true);
OpRegBankIdx = {PMI_GPR8,
/* Predicate */ PMI_None, FpRegBank, FpRegBank};
break;
}
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_ANYEXT: {
auto &Op0 = MI.getOperand(0);
auto &Op1 = MI.getOperand(1);
const LLT Ty0 = MRI.getType(Op0.getReg());
const LLT Ty1 = MRI.getType(Op1.getReg());
bool isFPTrunc = (Ty0.getSizeInBits() == 32 || Ty0.getSizeInBits() == 64) &&
Ty1.getSizeInBits() == 128 && Opc == TargetOpcode::G_TRUNC;
bool isFPAnyExt =
Ty0.getSizeInBits() == 128 &&
(Ty1.getSizeInBits() == 32 || Ty1.getSizeInBits() == 64) &&
Opc == TargetOpcode::G_ANYEXT;
getInstrPartialMappingIdxs(MI, MRI, /* isFP */ isFPTrunc || isFPAnyExt,
OpRegBankIdx);
} break;
default:
// Track the bank of each register, use NotFP mapping (all scalars in GPRs)
getInstrPartialMappingIdxs(MI, MRI, /* isFP */ false, OpRegBankIdx);
break;
}
// Finally construct the computed mapping.
SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
if (!getInstrValueMapping(MI, OpRegBankIdx, OpdsMapping))
return getInvalidInstructionMapping();
return getInstructionMapping(DefaultMappingID, /* Cost */ 1,
getOperandsMapping(OpdsMapping), NumOperands);
}
void X86RegisterBankInfo::applyMappingImpl(
const OperandsMapper &OpdMapper) const {
return applyDefaultMapping(OpdMapper);
}
RegisterBankInfo::InstructionMappings
X86RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const TargetSubtargetInfo &STI = MF.getSubtarget();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
const MachineRegisterInfo &MRI = MF.getRegInfo();
switch (MI.getOpcode()) {
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE:
case TargetOpcode::G_IMPLICIT_DEF: {
// we going to try to map 32/64 bit to PMI_FP32/PMI_FP64
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
if (Size != 32 && Size != 64)
break;
unsigned NumOperands = MI.getNumOperands();
// Track the bank of each register, use FP mapping (all scalars in VEC)
SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
getInstrPartialMappingIdxs(MI, MRI, /* isFP */ true, OpRegBankIdx);
// Finally construct the computed mapping.
SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
if (!getInstrValueMapping(MI, OpRegBankIdx, OpdsMapping))
break;
const RegisterBankInfo::InstructionMapping &Mapping = getInstructionMapping(
/*ID*/ 1, /*Cost*/ 1, getOperandsMapping(OpdsMapping), NumOperands);
InstructionMappings AltMappings;
AltMappings.push_back(&Mapping);
return AltMappings;
}
default:
break;
}
return RegisterBankInfo::getInstrAlternativeMappings(MI);
}
|