1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
|
//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file contains classes used to discover if for a particular value
// there from sue to definition that crosses a suspend block.
//
// Using the information discovered we form a Coroutine Frame structure to
// contain those values. All uses of those values are replaced with appropriate
// GEP + load from the coroutine frame. At the point of the definition we spill
// the value into the coroutine frame.
//
// TODO: pack values tightly using liveness info.
//===----------------------------------------------------------------------===//
#include "CoroInternal.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/circular_raw_ostream.h"
#include "llvm/Support/OptimizedStructLayout.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
using namespace llvm;
// The "coro-suspend-crossing" flag is very noisy. There is another debug type,
// "coro-frame", which results in leaner debug spew.
#define DEBUG_TYPE "coro-suspend-crossing"
enum { SmallVectorThreshold = 32 };
// Provides two way mapping between the blocks and numbers.
namespace {
class BlockToIndexMapping {
SmallVector<BasicBlock *, SmallVectorThreshold> V;
public:
size_t size() const { return V.size(); }
BlockToIndexMapping(Function &F) {
for (BasicBlock &BB : F)
V.push_back(&BB);
llvm::sort(V);
}
size_t blockToIndex(BasicBlock *BB) const {
auto *I = llvm::lower_bound(V, BB);
assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block");
return I - V.begin();
}
BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; }
};
} // end anonymous namespace
// The SuspendCrossingInfo maintains data that allows to answer a question
// whether given two BasicBlocks A and B there is a path from A to B that
// passes through a suspend point.
//
// For every basic block 'i' it maintains a BlockData that consists of:
// Consumes: a bit vector which contains a set of indices of blocks that can
// reach block 'i'
// Kills: a bit vector which contains a set of indices of blocks that can
// reach block 'i', but one of the path will cross a suspend point
// Suspend: a boolean indicating whether block 'i' contains a suspend point.
// End: a boolean indicating whether block 'i' contains a coro.end intrinsic.
//
namespace {
struct SuspendCrossingInfo {
BlockToIndexMapping Mapping;
struct BlockData {
BitVector Consumes;
BitVector Kills;
bool Suspend = false;
bool End = false;
};
SmallVector<BlockData, SmallVectorThreshold> Block;
iterator_range<succ_iterator> successors(BlockData const &BD) const {
BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]);
return llvm::successors(BB);
}
BlockData &getBlockData(BasicBlock *BB) {
return Block[Mapping.blockToIndex(BB)];
}
void dump() const;
void dump(StringRef Label, BitVector const &BV) const;
SuspendCrossingInfo(Function &F, coro::Shape &Shape);
bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const {
size_t const DefIndex = Mapping.blockToIndex(DefBB);
size_t const UseIndex = Mapping.blockToIndex(UseBB);
bool const Result = Block[UseIndex].Kills[DefIndex];
LLVM_DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName()
<< " answer is " << Result << "\n");
return Result;
}
bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const {
auto *I = cast<Instruction>(U);
// We rewrote PHINodes, so that only the ones with exactly one incoming
// value need to be analyzed.
if (auto *PN = dyn_cast<PHINode>(I))
if (PN->getNumIncomingValues() > 1)
return false;
BasicBlock *UseBB = I->getParent();
// As a special case, treat uses by an llvm.coro.suspend.retcon
// as if they were uses in the suspend's single predecessor: the
// uses conceptually occur before the suspend.
if (isa<CoroSuspendRetconInst>(I)) {
UseBB = UseBB->getSinglePredecessor();
assert(UseBB && "should have split coro.suspend into its own block");
}
return hasPathCrossingSuspendPoint(DefBB, UseBB);
}
bool isDefinitionAcrossSuspend(Argument &A, User *U) const {
return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U);
}
bool isDefinitionAcrossSuspend(Instruction &I, User *U) const {
auto *DefBB = I.getParent();
// As a special case, treat values produced by an llvm.coro.suspend.*
// as if they were defined in the single successor: the uses
// conceptually occur after the suspend.
if (isa<AnyCoroSuspendInst>(I)) {
DefBB = DefBB->getSingleSuccessor();
assert(DefBB && "should have split coro.suspend into its own block");
}
return isDefinitionAcrossSuspend(DefBB, U);
}
};
} // end anonymous namespace
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label,
BitVector const &BV) const {
dbgs() << Label << ":";
for (size_t I = 0, N = BV.size(); I < N; ++I)
if (BV[I])
dbgs() << " " << Mapping.indexToBlock(I)->getName();
dbgs() << "\n";
}
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const {
for (size_t I = 0, N = Block.size(); I < N; ++I) {
BasicBlock *const B = Mapping.indexToBlock(I);
dbgs() << B->getName() << ":\n";
dump(" Consumes", Block[I].Consumes);
dump(" Kills", Block[I].Kills);
}
dbgs() << "\n";
}
#endif
SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape)
: Mapping(F) {
const size_t N = Mapping.size();
Block.resize(N);
// Initialize every block so that it consumes itself
for (size_t I = 0; I < N; ++I) {
auto &B = Block[I];
B.Consumes.resize(N);
B.Kills.resize(N);
B.Consumes.set(I);
}
// Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as
// the code beyond coro.end is reachable during initial invocation of the
// coroutine.
for (auto *CE : Shape.CoroEnds)
getBlockData(CE->getParent()).End = true;
// Mark all suspend blocks and indicate that they kill everything they
// consume. Note, that crossing coro.save also requires a spill, as any code
// between coro.save and coro.suspend may resume the coroutine and all of the
// state needs to be saved by that time.
auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) {
BasicBlock *SuspendBlock = BarrierInst->getParent();
auto &B = getBlockData(SuspendBlock);
B.Suspend = true;
B.Kills |= B.Consumes;
};
for (auto *CSI : Shape.CoroSuspends) {
markSuspendBlock(CSI);
if (auto *Save = CSI->getCoroSave())
markSuspendBlock(Save);
}
// Iterate propagating consumes and kills until they stop changing.
int Iteration = 0;
(void)Iteration;
bool Changed;
do {
LLVM_DEBUG(dbgs() << "iteration " << ++Iteration);
LLVM_DEBUG(dbgs() << "==============\n");
Changed = false;
for (size_t I = 0; I < N; ++I) {
auto &B = Block[I];
for (BasicBlock *SI : successors(B)) {
auto SuccNo = Mapping.blockToIndex(SI);
// Saved Consumes and Kills bitsets so that it is easy to see
// if anything changed after propagation.
auto &S = Block[SuccNo];
auto SavedConsumes = S.Consumes;
auto SavedKills = S.Kills;
// Propagate Kills and Consumes from block B into its successor S.
S.Consumes |= B.Consumes;
S.Kills |= B.Kills;
// If block B is a suspend block, it should propagate kills into the
// its successor for every block B consumes.
if (B.Suspend) {
S.Kills |= B.Consumes;
}
if (S.Suspend) {
// If block S is a suspend block, it should kill all of the blocks it
// consumes.
S.Kills |= S.Consumes;
} else if (S.End) {
// If block S is an end block, it should not propagate kills as the
// blocks following coro.end() are reached during initial invocation
// of the coroutine while all the data are still available on the
// stack or in the registers.
S.Kills.reset();
} else {
// This is reached when S block it not Suspend nor coro.end and it
// need to make sure that it is not in the kill set.
S.Kills.reset(SuccNo);
}
// See if anything changed.
Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes);
if (S.Kills != SavedKills) {
LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName()
<< "\n");
LLVM_DEBUG(dump("S.Kills", S.Kills));
LLVM_DEBUG(dump("SavedKills", SavedKills));
}
if (S.Consumes != SavedConsumes) {
LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n");
LLVM_DEBUG(dump("S.Consume", S.Consumes));
LLVM_DEBUG(dump("SavedCons", SavedConsumes));
}
}
}
} while (Changed);
LLVM_DEBUG(dump());
}
#undef DEBUG_TYPE // "coro-suspend-crossing"
#define DEBUG_TYPE "coro-frame"
// We build up the list of spills for every case where a use is separated
// from the definition by a suspend point.
static const unsigned InvalidFieldIndex = ~0U;
namespace {
class Spill {
Value *Def = nullptr;
Instruction *User = nullptr;
unsigned FieldNo = InvalidFieldIndex;
public:
Spill(Value *Def, llvm::User *U) : Def(Def), User(cast<Instruction>(U)) {}
Value *def() const { return Def; }
Instruction *user() const { return User; }
BasicBlock *userBlock() const { return User->getParent(); }
// Note that field index is stored in the first SpillEntry for a particular
// definition. Subsequent mentions of a defintion do not have fieldNo
// assigned. This works out fine as the users of Spills capture the info about
// the definition the first time they encounter it. Consider refactoring
// SpillInfo into two arrays to normalize the spill representation.
unsigned fieldIndex() const {
assert(FieldNo != InvalidFieldIndex && "Accessing unassigned field");
return FieldNo;
}
void setFieldIndex(unsigned FieldNumber) {
assert(FieldNo == InvalidFieldIndex && "Reassigning field number");
FieldNo = FieldNumber;
}
};
} // namespace
// Note that there may be more than one record with the same value of Def in
// the SpillInfo vector.
using SpillInfo = SmallVector<Spill, 8>;
#ifndef NDEBUG
static void dump(StringRef Title, SpillInfo const &Spills) {
dbgs() << "------------- " << Title << "--------------\n";
Value *CurrentValue = nullptr;
for (auto const &E : Spills) {
if (CurrentValue != E.def()) {
CurrentValue = E.def();
CurrentValue->dump();
}
dbgs() << " user: ";
E.user()->dump();
}
}
#endif
namespace {
// We cannot rely solely on natural alignment of a type when building a
// coroutine frame and if the alignment specified on the Alloca instruction
// differs from the natural alignment of the alloca type we will need to insert
// padding.
class FrameTypeBuilder {
struct Field {
uint64_t Size;
uint64_t Offset;
Spill *ForSpill;
Type *Ty;
unsigned FieldIndex;
Align Alignment;
Align TyAlignment;
};
const DataLayout &DL;
LLVMContext &Context;
uint64_t StructSize = 0;
Align StructAlign;
bool IsFinished = false;
SmallVector<Field, 8> Fields;
DenseMap<Value*, unsigned> FieldIndexByKey;
public:
FrameTypeBuilder(LLVMContext &Context, DataLayout const &DL)
: DL(DL), Context(Context) {}
class FieldId {
size_t Value;
explicit FieldId(size_t Value) : Value(Value) {}
friend class FrameTypeBuilder;
};
/// Add a field to this structure for the storage of an `alloca`
/// instruction.
FieldId addFieldForAlloca(AllocaInst *AI, Spill *ForSpill = nullptr,
bool IsHeader = false) {
Type *Ty = AI->getAllocatedType();
// Make an array type if this is a static array allocation.
if (AI->isArrayAllocation()) {
if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
Ty = ArrayType::get(Ty, CI->getValue().getZExtValue());
else
report_fatal_error("Coroutines cannot handle non static allocas yet");
}
return addField(Ty, AI->getAlign(), ForSpill, IsHeader);
}
/// Add a field to this structure.
FieldId addField(Type *Ty, MaybeAlign FieldAlignment,
Spill *ForSpill = nullptr,
bool IsHeader = false) {
assert(!IsFinished && "adding fields to a finished builder");
assert(Ty && "must provide a type for a field");
// The field size is always the alloc size of the type.
uint64_t FieldSize = DL.getTypeAllocSize(Ty);
// The field alignment might not be the type alignment, but we need
// to remember the type alignment anyway to build the type.
Align TyAlignment = DL.getABITypeAlign(Ty);
if (!FieldAlignment) FieldAlignment = TyAlignment;
// Lay out header fields immediately.
uint64_t Offset;
if (IsHeader) {
Offset = alignTo(StructSize, FieldAlignment);
StructSize = Offset + FieldSize;
// Everything else has a flexible offset.
} else {
Offset = OptimizedStructLayoutField::FlexibleOffset;
}
Fields.push_back({FieldSize, Offset, ForSpill, Ty, 0,
*FieldAlignment, TyAlignment});
return FieldId(Fields.size() - 1);
}
/// Finish the layout and set the body on the given type.
void finish(StructType *Ty);
uint64_t getStructSize() const {
assert(IsFinished && "not yet finished!");
return StructSize;
}
Align getStructAlign() const {
assert(IsFinished && "not yet finished!");
return StructAlign;
}
unsigned getFieldIndex(FieldId Id) const {
assert(IsFinished && "not yet finished!");
return Fields[Id.Value].FieldIndex;
}
};
} // namespace
void FrameTypeBuilder::finish(StructType *Ty) {
assert(!IsFinished && "already finished!");
// Prepare the optimal-layout field array.
// The Id in the layout field is a pointer to our Field for it.
SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
LayoutFields.reserve(Fields.size());
for (auto &Field : Fields) {
LayoutFields.emplace_back(&Field, Field.Size, Field.Alignment,
Field.Offset);
}
// Perform layout.
auto SizeAndAlign = performOptimizedStructLayout(LayoutFields);
StructSize = SizeAndAlign.first;
StructAlign = SizeAndAlign.second;
auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & {
return *static_cast<Field *>(const_cast<void*>(LayoutField.Id));
};
// We need to produce a packed struct type if there's a field whose
// assigned offset isn't a multiple of its natural type alignment.
bool Packed = [&] {
for (auto &LayoutField : LayoutFields) {
auto &F = getField(LayoutField);
if (!isAligned(F.TyAlignment, LayoutField.Offset))
return true;
}
return false;
}();
// Build the struct body.
SmallVector<Type*, 16> FieldTypes;
FieldTypes.reserve(LayoutFields.size() * 3 / 2);
uint64_t LastOffset = 0;
for (auto &LayoutField : LayoutFields) {
auto &F = getField(LayoutField);
auto Offset = LayoutField.Offset;
// Add a padding field if there's a padding gap and we're either
// building a packed struct or the padding gap is more than we'd
// get from aligning to the field type's natural alignment.
assert(Offset >= LastOffset);
if (Offset != LastOffset) {
if (Packed || alignTo(LastOffset, F.TyAlignment) != Offset)
FieldTypes.push_back(ArrayType::get(Type::getInt8Ty(Context),
Offset - LastOffset));
}
// Record the layout information into both the Field and the
// original Spill, if there is one.
F.Offset = Offset;
F.FieldIndex = FieldTypes.size();
if (F.ForSpill) {
F.ForSpill->setFieldIndex(F.FieldIndex);
}
FieldTypes.push_back(F.Ty);
LastOffset = Offset + F.Size;
}
Ty->setBody(FieldTypes, Packed);
#ifndef NDEBUG
// Check that the IR layout matches the offsets we expect.
auto Layout = DL.getStructLayout(Ty);
for (auto &F : Fields) {
assert(Ty->getElementType(F.FieldIndex) == F.Ty);
assert(Layout->getElementOffset(F.FieldIndex) == F.Offset);
}
#endif
IsFinished = true;
}
// Build a struct that will keep state for an active coroutine.
// struct f.frame {
// ResumeFnTy ResumeFnAddr;
// ResumeFnTy DestroyFnAddr;
// int ResumeIndex;
// ... promise (if present) ...
// ... spills ...
// };
static StructType *buildFrameType(Function &F, coro::Shape &Shape,
SpillInfo &Spills) {
LLVMContext &C = F.getContext();
const DataLayout &DL = F.getParent()->getDataLayout();
StructType *FrameTy = [&] {
SmallString<32> Name(F.getName());
Name.append(".Frame");
return StructType::create(C, Name);
}();
FrameTypeBuilder B(C, DL);
AllocaInst *PromiseAlloca = Shape.getPromiseAlloca();
Optional<FrameTypeBuilder::FieldId> PromiseFieldId;
Optional<FrameTypeBuilder::FieldId> SwitchIndexFieldId;
if (Shape.ABI == coro::ABI::Switch) {
auto *FramePtrTy = FrameTy->getPointerTo();
auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy,
/*IsVarArg=*/false);
auto *FnPtrTy = FnTy->getPointerTo();
// Add header fields for the resume and destroy functions.
// We can rely on these being perfectly packed.
B.addField(FnPtrTy, None, nullptr, /*header*/ true);
B.addField(FnPtrTy, None, nullptr, /*header*/ true);
// Add a header field for the promise if there is one.
if (PromiseAlloca) {
PromiseFieldId =
B.addFieldForAlloca(PromiseAlloca, nullptr, /*header*/ true);
}
// Add a field to store the suspend index. This doesn't need to
// be in the header.
unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
Type *IndexType = Type::getIntNTy(C, IndexBits);
SwitchIndexFieldId = B.addField(IndexType, None);
} else {
assert(PromiseAlloca == nullptr && "lowering doesn't support promises");
}
Value *CurrentDef = nullptr;
// Create an entry for every spilled value.
for (auto &S : Spills) {
// We can have multiple entries in Spills for a single value, but
// they should form a contiguous run. Ignore all but the first.
if (CurrentDef == S.def())
continue;
CurrentDef = S.def();
assert(CurrentDef != PromiseAlloca &&
"recorded spill use of promise alloca?");
if (auto *AI = dyn_cast<AllocaInst>(CurrentDef)) {
B.addFieldForAlloca(AI, &S);
} else {
Type *Ty = CurrentDef->getType();
B.addField(Ty, None, &S);
}
}
B.finish(FrameTy);
Shape.FrameAlign = B.getStructAlign();
Shape.FrameSize = B.getStructSize();
switch (Shape.ABI) {
// In the switch ABI, remember the field indices for the promise and
// switch-index fields.
case coro::ABI::Switch:
Shape.SwitchLowering.IndexField =
B.getFieldIndex(*SwitchIndexFieldId);
Shape.SwitchLowering.PromiseField =
(PromiseAlloca ? B.getFieldIndex(*PromiseFieldId) : 0);
// Also round the frame size up to a multiple of its alignment, as is
// generally expected in C/C++.
Shape.FrameSize = alignTo(Shape.FrameSize, Shape.FrameAlign);
break;
// In the retcon ABI, remember whether the frame is inline in the storage.
case coro::ABI::Retcon:
case coro::ABI::RetconOnce: {
auto Id = Shape.getRetconCoroId();
Shape.RetconLowering.IsFrameInlineInStorage
= (B.getStructSize() <= Id->getStorageSize() &&
B.getStructAlign() <= Id->getStorageAlignment());
break;
}
}
return FrameTy;
}
// We use a pointer use visitor to discover if there are any writes into an
// alloca that dominates CoroBegin. If that is the case, insertSpills will copy
// the value from the alloca into the coroutine frame spill slot corresponding
// to that alloca.
namespace {
struct AllocaUseVisitor : PtrUseVisitor<AllocaUseVisitor> {
using Base = PtrUseVisitor<AllocaUseVisitor>;
AllocaUseVisitor(const DataLayout &DL, const DominatorTree &DT,
const CoroBeginInst &CB)
: PtrUseVisitor(DL), DT(DT), CoroBegin(CB) {}
// We are only interested in uses that dominate coro.begin.
void visit(Instruction &I) {
if (DT.dominates(&I, &CoroBegin))
Base::visit(I);
}
// We need to provide this overload as PtrUseVisitor uses a pointer based
// visiting function.
void visit(Instruction *I) { return visit(*I); }
void visitLoadInst(LoadInst &) {} // Good. Nothing to do.
// If the use is an operand, the pointer escaped and anything can write into
// that memory. If the use is the pointer, we are definitely writing into the
// alloca and therefore we need to copy.
void visitStoreInst(StoreInst &SI) { PI.setAborted(&SI); }
// Any other instruction that is not filtered out by PtrUseVisitor, will
// result in the copy.
void visitInstruction(Instruction &I) { PI.setAborted(&I); }
private:
const DominatorTree &DT;
const CoroBeginInst &CoroBegin;
};
} // namespace
static bool mightWriteIntoAllocaPtr(AllocaInst &A, const DominatorTree &DT,
const CoroBeginInst &CB) {
const DataLayout &DL = A.getModule()->getDataLayout();
AllocaUseVisitor Visitor(DL, DT, CB);
auto PtrI = Visitor.visitPtr(A);
if (PtrI.isEscaped() || PtrI.isAborted()) {
auto *PointerEscapingInstr = PtrI.getEscapingInst()
? PtrI.getEscapingInst()
: PtrI.getAbortingInst();
if (PointerEscapingInstr) {
LLVM_DEBUG(
dbgs() << "AllocaInst copy was triggered by instruction: "
<< *PointerEscapingInstr << "\n");
}
return true;
}
return false;
}
// We need to make room to insert a spill after initial PHIs, but before
// catchswitch instruction. Placing it before violates the requirement that
// catchswitch, like all other EHPads must be the first nonPHI in a block.
//
// Split away catchswitch into a separate block and insert in its place:
//
// cleanuppad <InsertPt> cleanupret.
//
// cleanupret instruction will act as an insert point for the spill.
static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) {
BasicBlock *CurrentBlock = CatchSwitch->getParent();
BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch);
CurrentBlock->getTerminator()->eraseFromParent();
auto *CleanupPad =
CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock);
auto *CleanupRet =
CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock);
return CleanupRet;
}
// Replace all alloca and SSA values that are accessed across suspend points
// with GetElementPointer from coroutine frame + loads and stores. Create an
// AllocaSpillBB that will become the new entry block for the resume parts of
// the coroutine:
//
// %hdl = coro.begin(...)
// whatever
//
// becomes:
//
// %hdl = coro.begin(...)
// %FramePtr = bitcast i8* hdl to %f.frame*
// br label %AllocaSpillBB
//
// AllocaSpillBB:
// ; geps corresponding to allocas that were moved to coroutine frame
// br label PostSpill
//
// PostSpill:
// whatever
//
//
static Instruction *insertSpills(const SpillInfo &Spills, coro::Shape &Shape) {
auto *CB = Shape.CoroBegin;
LLVMContext &C = CB->getContext();
IRBuilder<> Builder(CB->getNextNode());
StructType *FrameTy = Shape.FrameTy;
PointerType *FramePtrTy = FrameTy->getPointerTo();
auto *FramePtr =
cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr"));
DominatorTree DT(*CB->getFunction());
Value *CurrentValue = nullptr;
BasicBlock *CurrentBlock = nullptr;
Value *CurrentReload = nullptr;
// Proper field number will be read from field definition.
unsigned Index = InvalidFieldIndex;
// We need to keep track of any allocas that need "spilling"
// since they will live in the coroutine frame now, all access to them
// need to be changed, not just the access across suspend points
// we remember allocas and their indices to be handled once we processed
// all the spills.
SmallVector<std::pair<AllocaInst *, unsigned>, 4> Allocas;
// Promise alloca (if present) doesn't show in the spills and has a
// special field number.
if (auto *PromiseAlloca = Shape.getPromiseAlloca()) {
assert(Shape.ABI == coro::ABI::Switch);
Allocas.emplace_back(PromiseAlloca, Shape.getPromiseField());
}
// Create a GEP with the given index into the coroutine frame for the original
// value Orig. Appends an extra 0 index for array-allocas, preserving the
// original type.
auto GetFramePointer = [&](uint32_t Index, Value *Orig) -> Value * {
SmallVector<Value *, 3> Indices = {
ConstantInt::get(Type::getInt32Ty(C), 0),
ConstantInt::get(Type::getInt32Ty(C), Index),
};
if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
auto Count = CI->getValue().getZExtValue();
if (Count > 1) {
Indices.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
}
} else {
report_fatal_error("Coroutines cannot handle non static allocas yet");
}
}
return Builder.CreateInBoundsGEP(FrameTy, FramePtr, Indices);
};
// Create a load instruction to reload the spilled value from the coroutine
// frame. Populates the Value pointer reference provided with the frame GEP.
auto CreateReload = [&](Instruction *InsertBefore, Value *&G) {
assert(Index != InvalidFieldIndex && "accessing unassigned field number");
Builder.SetInsertPoint(InsertBefore);
G = GetFramePointer(Index, CurrentValue);
G->setName(CurrentValue->getName() + Twine(".reload.addr"));
return isa<AllocaInst>(CurrentValue)
? G
: Builder.CreateLoad(FrameTy->getElementType(Index), G,
CurrentValue->getName() + Twine(".reload"));
};
Value *GEP = nullptr, *CurrentGEP = nullptr;
for (auto const &E : Spills) {
// If we have not seen the value, generate a spill.
if (CurrentValue != E.def()) {
CurrentValue = E.def();
CurrentBlock = nullptr;
CurrentReload = nullptr;
Index = E.fieldIndex();
if (auto *AI = dyn_cast<AllocaInst>(CurrentValue)) {
// Spilled AllocaInst will be replaced with GEP from the coroutine frame
// there is no spill required.
Allocas.emplace_back(AI, Index);
if (!AI->isStaticAlloca())
report_fatal_error("Coroutines cannot handle non static allocas yet");
} else {
// Otherwise, create a store instruction storing the value into the
// coroutine frame.
Instruction *InsertPt = nullptr;
if (auto Arg = dyn_cast<Argument>(CurrentValue)) {
// For arguments, we will place the store instruction right after
// the coroutine frame pointer instruction, i.e. bitcast of
// coro.begin from i8* to %f.frame*.
InsertPt = FramePtr->getNextNode();
// If we're spilling an Argument, make sure we clear 'nocapture'
// from the coroutine function.
Arg->getParent()->removeParamAttr(Arg->getArgNo(),
Attribute::NoCapture);
} else if (auto *II = dyn_cast<InvokeInst>(CurrentValue)) {
// If we are spilling the result of the invoke instruction, split the
// normal edge and insert the spill in the new block.
auto NewBB = SplitEdge(II->getParent(), II->getNormalDest());
InsertPt = NewBB->getTerminator();
} else if (isa<PHINode>(CurrentValue)) {
// Skip the PHINodes and EH pads instructions.
BasicBlock *DefBlock = cast<Instruction>(E.def())->getParent();
if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator()))
InsertPt = splitBeforeCatchSwitch(CSI);
else
InsertPt = &*DefBlock->getFirstInsertionPt();
} else if (auto CSI = dyn_cast<AnyCoroSuspendInst>(CurrentValue)) {
// Don't spill immediately after a suspend; splitting assumes
// that the suspend will be followed by a branch.
InsertPt = CSI->getParent()->getSingleSuccessor()->getFirstNonPHI();
} else {
auto *I = cast<Instruction>(E.def());
assert(!I->isTerminator() && "unexpected terminator");
// For all other values, the spill is placed immediately after
// the definition.
if (DT.dominates(CB, I)) {
InsertPt = I->getNextNode();
} else {
// Unless, it is not dominated by CoroBegin, then it will be
// inserted immediately after CoroFrame is computed.
InsertPt = FramePtr->getNextNode();
}
}
Builder.SetInsertPoint(InsertPt);
auto *G = Builder.CreateConstInBoundsGEP2_32(
FrameTy, FramePtr, 0, Index,
CurrentValue->getName() + Twine(".spill.addr"));
Builder.CreateStore(CurrentValue, G);
}
}
// If we have not seen the use block, generate a reload in it.
if (CurrentBlock != E.userBlock()) {
CurrentBlock = E.userBlock();
CurrentReload = CreateReload(&*CurrentBlock->getFirstInsertionPt(), GEP);
}
// If we have a single edge PHINode, remove it and replace it with a reload
// from the coroutine frame. (We already took care of multi edge PHINodes
// by rewriting them in the rewritePHIs function).
if (auto *PN = dyn_cast<PHINode>(E.user())) {
assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
"values in the PHINode");
PN->replaceAllUsesWith(CurrentReload);
PN->eraseFromParent();
continue;
}
// If we have not seen this GEP instruction, migrate any dbg.declare from
// the alloca to it.
if (CurrentGEP != GEP) {
CurrentGEP = GEP;
TinyPtrVector<DbgDeclareInst *> DIs = FindDbgDeclareUses(CurrentValue);
if (!DIs.empty())
DIBuilder(*CurrentBlock->getParent()->getParent(),
/*AllowUnresolved*/ false)
.insertDeclare(CurrentGEP, DIs.front()->getVariable(),
DIs.front()->getExpression(),
DIs.front()->getDebugLoc(), DIs.front());
}
// Replace all uses of CurrentValue in the current instruction with reload.
E.user()->replaceUsesOfWith(CurrentValue, CurrentReload);
}
BasicBlock *FramePtrBB = FramePtr->getParent();
auto SpillBlock =
FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB");
SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill");
Shape.AllocaSpillBlock = SpillBlock;
// retcon and retcon.once lowering assumes all uses have been sunk.
if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce) {
// If we found any allocas, replace all of their remaining uses with Geps.
Builder.SetInsertPoint(&SpillBlock->front());
for (auto &P : Allocas) {
auto *G = GetFramePointer(P.second, P.first);
// We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G))
// here, as we are changing location of the instruction.
G->takeName(P.first);
P.first->replaceAllUsesWith(G);
P.first->eraseFromParent();
}
return FramePtr;
}
// If we found any alloca, replace all of their remaining uses with GEP
// instructions. Because new dbg.declare have been created for these alloca,
// we also delete the original dbg.declare and replace other uses with undef.
// Note: We cannot replace the alloca with GEP instructions indiscriminately,
// as some of the uses may not be dominated by CoroBegin.
bool MightNeedToCopy = false;
Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front());
SmallVector<Instruction *, 4> UsersToUpdate;
for (auto &P : Allocas) {
AllocaInst *const A = P.first;
for (auto *DI : FindDbgDeclareUses(A))
DI->eraseFromParent();
replaceDbgUsesWithUndef(A);
UsersToUpdate.clear();
for (User *U : A->users()) {
auto *I = cast<Instruction>(U);
if (DT.dominates(CB, I))
UsersToUpdate.push_back(I);
else
MightNeedToCopy = true;
}
if (!UsersToUpdate.empty()) {
auto *G = GetFramePointer(P.second, A);
G->takeName(A);
for (Instruction *I : UsersToUpdate)
I->replaceUsesOfWith(A, G);
}
}
// If we discovered such uses not dominated by CoroBegin, see if any of them
// preceed coro begin and have instructions that can modify the
// value of the alloca and therefore would require a copying the value into
// the spill slot in the coroutine frame.
if (MightNeedToCopy) {
Builder.SetInsertPoint(FramePtr->getNextNode());
for (auto &P : Allocas) {
AllocaInst *const A = P.first;
if (mightWriteIntoAllocaPtr(*A, DT, *CB)) {
if (A->isArrayAllocation())
report_fatal_error(
"Coroutines cannot handle copying of array allocas yet");
auto *G = GetFramePointer(P.second, A);
auto *Value = Builder.CreateLoad(A->getAllocatedType(), A);
Builder.CreateStore(Value, G);
}
}
}
return FramePtr;
}
// Sets the unwind edge of an instruction to a particular successor.
static void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
if (auto *II = dyn_cast<InvokeInst>(TI))
II->setUnwindDest(Succ);
else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
CS->setUnwindDest(Succ);
else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
CR->setUnwindDest(Succ);
else
llvm_unreachable("unexpected terminator instruction");
}
// Replaces all uses of OldPred with the NewPred block in all PHINodes in a
// block.
static void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
BasicBlock *NewPred,
PHINode *LandingPadReplacement) {
unsigned BBIdx = 0;
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// We manually update the LandingPadReplacement PHINode and it is the last
// PHI Node. So, if we find it, we are done.
if (LandingPadReplacement == PN)
break;
// Reuse the previous value of BBIdx if it lines up. In cases where we
// have multiple phi nodes with *lots* of predecessors, this is a speed
// win because we don't have to scan the PHI looking for TIBB. This
// happens because the BB list of PHI nodes are usually in the same
// order.
if (PN->getIncomingBlock(BBIdx) != OldPred)
BBIdx = PN->getBasicBlockIndex(OldPred);
assert(BBIdx != (unsigned)-1 && "Invalid PHI Index!");
PN->setIncomingBlock(BBIdx, NewPred);
}
}
// Uses SplitEdge unless the successor block is an EHPad, in which case do EH
// specific handling.
static BasicBlock *ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
LandingPadInst *OriginalPad,
PHINode *LandingPadReplacement) {
auto *PadInst = Succ->getFirstNonPHI();
if (!LandingPadReplacement && !PadInst->isEHPad())
return SplitEdge(BB, Succ);
auto *NewBB = BasicBlock::Create(BB->getContext(), "", BB->getParent(), Succ);
setUnwindEdgeTo(BB->getTerminator(), NewBB);
updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
if (LandingPadReplacement) {
auto *NewLP = OriginalPad->clone();
auto *Terminator = BranchInst::Create(Succ, NewBB);
NewLP->insertBefore(Terminator);
LandingPadReplacement->addIncoming(NewLP, NewBB);
return NewBB;
}
Value *ParentPad = nullptr;
if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
ParentPad = FuncletPad->getParentPad();
else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
ParentPad = CatchSwitch->getParentPad();
else
llvm_unreachable("handling for other EHPads not implemented yet");
auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, "", NewBB);
CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
return NewBB;
}
static void rewritePHIs(BasicBlock &BB) {
// For every incoming edge we will create a block holding all
// incoming values in a single PHI nodes.
//
// loop:
// %n.val = phi i32[%n, %entry], [%inc, %loop]
//
// It will create:
//
// loop.from.entry:
// %n.loop.pre = phi i32 [%n, %entry]
// br %label loop
// loop.from.loop:
// %inc.loop.pre = phi i32 [%inc, %loop]
// br %label loop
//
// After this rewrite, further analysis will ignore any phi nodes with more
// than one incoming edge.
// TODO: Simplify PHINodes in the basic block to remove duplicate
// predecessors.
LandingPadInst *LandingPad = nullptr;
PHINode *ReplPHI = nullptr;
if ((LandingPad = dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHI()))) {
// ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
// We replace the original landing pad with a PHINode that will collect the
// results from all of them.
ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad);
ReplPHI->takeName(LandingPad);
LandingPad->replaceAllUsesWith(ReplPHI);
// We will erase the original landing pad at the end of this function after
// ehAwareSplitEdge cloned it in the transition blocks.
}
SmallVector<BasicBlock *, 8> Preds(pred_begin(&BB), pred_end(&BB));
for (BasicBlock *Pred : Preds) {
auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
auto *PN = cast<PHINode>(&BB.front());
do {
int Index = PN->getBasicBlockIndex(IncomingBB);
Value *V = PN->getIncomingValue(Index);
PHINode *InputV = PHINode::Create(
V->getType(), 1, V->getName() + Twine(".") + BB.getName(),
&IncomingBB->front());
InputV->addIncoming(V, Pred);
PN->setIncomingValue(Index, InputV);
PN = dyn_cast<PHINode>(PN->getNextNode());
} while (PN != ReplPHI); // ReplPHI is either null or the PHI that replaced
// the landing pad.
}
if (LandingPad) {
// Calls to ehAwareSplitEdge function cloned the original lading pad.
// No longer need it.
LandingPad->eraseFromParent();
}
}
static void rewritePHIs(Function &F) {
SmallVector<BasicBlock *, 8> WorkList;
for (BasicBlock &BB : F)
if (auto *PN = dyn_cast<PHINode>(&BB.front()))
if (PN->getNumIncomingValues() > 1)
WorkList.push_back(&BB);
for (BasicBlock *BB : WorkList)
rewritePHIs(*BB);
}
// Check for instructions that we can recreate on resume as opposed to spill
// the result into a coroutine frame.
static bool materializable(Instruction &V) {
return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) ||
isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V);
}
// Check for structural coroutine intrinsics that should not be spilled into
// the coroutine frame.
static bool isCoroutineStructureIntrinsic(Instruction &I) {
return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) ||
isa<CoroSuspendInst>(&I);
}
// For every use of the value that is across suspend point, recreate that value
// after a suspend point.
static void rewriteMaterializableInstructions(IRBuilder<> &IRB,
SpillInfo const &Spills) {
BasicBlock *CurrentBlock = nullptr;
Instruction *CurrentMaterialization = nullptr;
Instruction *CurrentDef = nullptr;
for (auto const &E : Spills) {
// If it is a new definition, update CurrentXXX variables.
if (CurrentDef != E.def()) {
CurrentDef = cast<Instruction>(E.def());
CurrentBlock = nullptr;
CurrentMaterialization = nullptr;
}
// If we have not seen this block, materialize the value.
if (CurrentBlock != E.userBlock()) {
CurrentBlock = E.userBlock();
CurrentMaterialization = cast<Instruction>(CurrentDef)->clone();
CurrentMaterialization->setName(CurrentDef->getName());
CurrentMaterialization->insertBefore(
&*CurrentBlock->getFirstInsertionPt());
}
if (auto *PN = dyn_cast<PHINode>(E.user())) {
assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
"values in the PHINode");
PN->replaceAllUsesWith(CurrentMaterialization);
PN->eraseFromParent();
continue;
}
// Replace all uses of CurrentDef in the current instruction with the
// CurrentMaterialization for the block.
E.user()->replaceUsesOfWith(CurrentDef, CurrentMaterialization);
}
}
// Splits the block at a particular instruction unless it is the first
// instruction in the block with a single predecessor.
static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) {
auto *BB = I->getParent();
if (&BB->front() == I) {
if (BB->getSinglePredecessor()) {
BB->setName(Name);
return BB;
}
}
return BB->splitBasicBlock(I, Name);
}
// Split above and below a particular instruction so that it
// will be all alone by itself in a block.
static void splitAround(Instruction *I, const Twine &Name) {
splitBlockIfNotFirst(I, Name);
splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
}
static bool isSuspendBlock(BasicBlock *BB) {
return isa<AnyCoroSuspendInst>(BB->front());
}
typedef SmallPtrSet<BasicBlock*, 8> VisitedBlocksSet;
/// Does control flow starting at the given block ever reach a suspend
/// instruction before reaching a block in VisitedOrFreeBBs?
static bool isSuspendReachableFrom(BasicBlock *From,
VisitedBlocksSet &VisitedOrFreeBBs) {
// Eagerly try to add this block to the visited set. If it's already
// there, stop recursing; this path doesn't reach a suspend before
// either looping or reaching a freeing block.
if (!VisitedOrFreeBBs.insert(From).second)
return false;
// We assume that we'll already have split suspends into their own blocks.
if (isSuspendBlock(From))
return true;
// Recurse on the successors.
for (auto Succ : successors(From)) {
if (isSuspendReachableFrom(Succ, VisitedOrFreeBBs))
return true;
}
return false;
}
/// Is the given alloca "local", i.e. bounded in lifetime to not cross a
/// suspend point?
static bool isLocalAlloca(CoroAllocaAllocInst *AI) {
// Seed the visited set with all the basic blocks containing a free
// so that we won't pass them up.
VisitedBlocksSet VisitedOrFreeBBs;
for (auto User : AI->users()) {
if (auto FI = dyn_cast<CoroAllocaFreeInst>(User))
VisitedOrFreeBBs.insert(FI->getParent());
}
return !isSuspendReachableFrom(AI->getParent(), VisitedOrFreeBBs);
}
/// After we split the coroutine, will the given basic block be along
/// an obvious exit path for the resumption function?
static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB,
unsigned depth = 3) {
// If we've bottomed out our depth count, stop searching and assume
// that the path might loop back.
if (depth == 0) return false;
// If this is a suspend block, we're about to exit the resumption function.
if (isSuspendBlock(BB)) return true;
// Recurse into the successors.
for (auto Succ : successors(BB)) {
if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1))
return false;
}
// If none of the successors leads back in a loop, we're on an exit/abort.
return true;
}
static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI) {
// Look for a free that isn't sufficiently obviously followed by
// either a suspend or a termination, i.e. something that will leave
// the coro resumption frame.
for (auto U : AI->users()) {
auto FI = dyn_cast<CoroAllocaFreeInst>(U);
if (!FI) continue;
if (!willLeaveFunctionImmediatelyAfter(FI->getParent()))
return true;
}
// If we never found one, we don't need a stack save.
return false;
}
/// Turn each of the given local allocas into a normal (dynamic) alloca
/// instruction.
static void lowerLocalAllocas(ArrayRef<CoroAllocaAllocInst*> LocalAllocas,
SmallVectorImpl<Instruction*> &DeadInsts) {
for (auto AI : LocalAllocas) {
auto M = AI->getModule();
IRBuilder<> Builder(AI);
// Save the stack depth. Try to avoid doing this if the stackrestore
// is going to immediately precede a return or something.
Value *StackSave = nullptr;
if (localAllocaNeedsStackSave(AI))
StackSave = Builder.CreateCall(
Intrinsic::getDeclaration(M, Intrinsic::stacksave));
// Allocate memory.
auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize());
Alloca->setAlignment(Align(AI->getAlignment()));
for (auto U : AI->users()) {
// Replace gets with the allocation.
if (isa<CoroAllocaGetInst>(U)) {
U->replaceAllUsesWith(Alloca);
// Replace frees with stackrestores. This is safe because
// alloca.alloc is required to obey a stack discipline, although we
// don't enforce that structurally.
} else {
auto FI = cast<CoroAllocaFreeInst>(U);
if (StackSave) {
Builder.SetInsertPoint(FI);
Builder.CreateCall(
Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
StackSave);
}
}
DeadInsts.push_back(cast<Instruction>(U));
}
DeadInsts.push_back(AI);
}
}
/// Turn the given coro.alloca.alloc call into a dynamic allocation.
/// This happens during the all-instructions iteration, so it must not
/// delete the call.
static Instruction *lowerNonLocalAlloca(CoroAllocaAllocInst *AI,
coro::Shape &Shape,
SmallVectorImpl<Instruction*> &DeadInsts) {
IRBuilder<> Builder(AI);
auto Alloc = Shape.emitAlloc(Builder, AI->getSize(), nullptr);
for (User *U : AI->users()) {
if (isa<CoroAllocaGetInst>(U)) {
U->replaceAllUsesWith(Alloc);
} else {
auto FI = cast<CoroAllocaFreeInst>(U);
Builder.SetInsertPoint(FI);
Shape.emitDealloc(Builder, Alloc, nullptr);
}
DeadInsts.push_back(cast<Instruction>(U));
}
// Push this on last so that it gets deleted after all the others.
DeadInsts.push_back(AI);
// Return the new allocation value so that we can check for needed spills.
return cast<Instruction>(Alloc);
}
/// Get the current swifterror value.
static Value *emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy,
coro::Shape &Shape) {
// Make a fake function pointer as a sort of intrinsic.
auto FnTy = FunctionType::get(ValueTy, {}, false);
auto Fn = ConstantPointerNull::get(FnTy->getPointerTo());
auto Call = Builder.CreateCall(FnTy, Fn, {});
Shape.SwiftErrorOps.push_back(Call);
return Call;
}
/// Set the given value as the current swifterror value.
///
/// Returns a slot that can be used as a swifterror slot.
static Value *emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V,
coro::Shape &Shape) {
// Make a fake function pointer as a sort of intrinsic.
auto FnTy = FunctionType::get(V->getType()->getPointerTo(),
{V->getType()}, false);
auto Fn = ConstantPointerNull::get(FnTy->getPointerTo());
auto Call = Builder.CreateCall(FnTy, Fn, { V });
Shape.SwiftErrorOps.push_back(Call);
return Call;
}
/// Set the swifterror value from the given alloca before a call,
/// then put in back in the alloca afterwards.
///
/// Returns an address that will stand in for the swifterror slot
/// until splitting.
static Value *emitSetAndGetSwiftErrorValueAround(Instruction *Call,
AllocaInst *Alloca,
coro::Shape &Shape) {
auto ValueTy = Alloca->getAllocatedType();
IRBuilder<> Builder(Call);
// Load the current value from the alloca and set it as the
// swifterror value.
auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca);
auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape);
// Move to after the call. Since swifterror only has a guaranteed
// value on normal exits, we can ignore implicit and explicit unwind
// edges.
if (isa<CallInst>(Call)) {
Builder.SetInsertPoint(Call->getNextNode());
} else {
auto Invoke = cast<InvokeInst>(Call);
Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg());
}
// Get the current swifterror value and store it to the alloca.
auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape);
Builder.CreateStore(ValueAfterCall, Alloca);
return Addr;
}
/// Eliminate a formerly-swifterror alloca by inserting the get/set
/// intrinsics and attempting to MemToReg the alloca away.
static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca,
coro::Shape &Shape) {
for (auto UI = Alloca->use_begin(), UE = Alloca->use_end(); UI != UE; ) {
// We're likely changing the use list, so use a mutation-safe
// iteration pattern.
auto &Use = *UI;
++UI;
// swifterror values can only be used in very specific ways.
// We take advantage of that here.
auto User = Use.getUser();
if (isa<LoadInst>(User) || isa<StoreInst>(User))
continue;
assert(isa<CallInst>(User) || isa<InvokeInst>(User));
auto Call = cast<Instruction>(User);
auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape);
// Use the returned slot address as the call argument.
Use.set(Addr);
}
// All the uses should be loads and stores now.
assert(isAllocaPromotable(Alloca));
}
/// "Eliminate" a swifterror argument by reducing it to the alloca case
/// and then loading and storing in the prologue and epilog.
///
/// The argument keeps the swifterror flag.
static void eliminateSwiftErrorArgument(Function &F, Argument &Arg,
coro::Shape &Shape,
SmallVectorImpl<AllocaInst*> &AllocasToPromote) {
IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg());
auto ArgTy = cast<PointerType>(Arg.getType());
auto ValueTy = ArgTy->getElementType();
// Reduce to the alloca case:
// Create an alloca and replace all uses of the arg with it.
auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace());
Arg.replaceAllUsesWith(Alloca);
// Set an initial value in the alloca. swifterror is always null on entry.
auto InitialValue = Constant::getNullValue(ValueTy);
Builder.CreateStore(InitialValue, Alloca);
// Find all the suspends in the function and save and restore around them.
for (auto Suspend : Shape.CoroSuspends) {
(void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape);
}
// Find all the coro.ends in the function and restore the error value.
for (auto End : Shape.CoroEnds) {
Builder.SetInsertPoint(End);
auto FinalValue = Builder.CreateLoad(ValueTy, Alloca);
(void) emitSetSwiftErrorValue(Builder, FinalValue, Shape);
}
// Now we can use the alloca logic.
AllocasToPromote.push_back(Alloca);
eliminateSwiftErrorAlloca(F, Alloca, Shape);
}
/// Eliminate all problematic uses of swifterror arguments and allocas
/// from the function. We'll fix them up later when splitting the function.
static void eliminateSwiftError(Function &F, coro::Shape &Shape) {
SmallVector<AllocaInst*, 4> AllocasToPromote;
// Look for a swifterror argument.
for (auto &Arg : F.args()) {
if (!Arg.hasSwiftErrorAttr()) continue;
eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote);
break;
}
// Look for swifterror allocas.
for (auto &Inst : F.getEntryBlock()) {
auto Alloca = dyn_cast<AllocaInst>(&Inst);
if (!Alloca || !Alloca->isSwiftError()) continue;
// Clear the swifterror flag.
Alloca->setSwiftError(false);
AllocasToPromote.push_back(Alloca);
eliminateSwiftErrorAlloca(F, Alloca, Shape);
}
// If we have any allocas to promote, compute a dominator tree and
// promote them en masse.
if (!AllocasToPromote.empty()) {
DominatorTree DT(F);
PromoteMemToReg(AllocasToPromote, DT);
}
}
/// retcon and retcon.once conventions assume that all spill uses can be sunk
/// after the coro.begin intrinsic.
static void sinkSpillUsesAfterCoroBegin(Function &F, const SpillInfo &Spills,
CoroBeginInst *CoroBegin) {
DominatorTree Dom(F);
SmallSetVector<Instruction *, 32> ToMove;
SmallVector<Instruction *, 32> Worklist;
// Collect all users that precede coro.begin.
for (auto const &Entry : Spills) {
auto *SpillDef = Entry.def();
for (User *U : SpillDef->users()) {
auto Inst = cast<Instruction>(U);
if (Inst->getParent() != CoroBegin->getParent() ||
Dom.dominates(CoroBegin, Inst))
continue;
if (ToMove.insert(Inst))
Worklist.push_back(Inst);
}
}
// Recursively collect users before coro.begin.
while (!Worklist.empty()) {
auto *Def = Worklist.back();
Worklist.pop_back();
for (User *U : Def->users()) {
auto Inst = cast<Instruction>(U);
if (Dom.dominates(CoroBegin, Inst))
continue;
if (ToMove.insert(Inst))
Worklist.push_back(Inst);
}
}
// Sort by dominance.
SmallVector<Instruction *, 64> InsertionList(ToMove.begin(), ToMove.end());
std::sort(InsertionList.begin(), InsertionList.end(),
[&Dom](Instruction *A, Instruction *B) -> bool {
// If a dominates b it should preceed (<) b.
return Dom.dominates(A, B);
});
Instruction *InsertPt = CoroBegin->getNextNode();
for (Instruction *Inst : InsertionList)
Inst->moveBefore(InsertPt);
return;
}
/// For each local variable that all of its user are only used inside one of
/// suspended region, we sink their lifetime.start markers to the place where
/// after the suspend block. Doing so minimizes the lifetime of each variable,
/// hence minimizing the amount of data we end up putting on the frame.
static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape,
SuspendCrossingInfo &Checker) {
DominatorTree DT(F);
// Collect all possible basic blocks which may dominate all uses of allocas.
SmallPtrSet<BasicBlock *, 4> DomSet;
DomSet.insert(&F.getEntryBlock());
for (auto *CSI : Shape.CoroSuspends) {
BasicBlock *SuspendBlock = CSI->getParent();
assert(isSuspendBlock(SuspendBlock) && SuspendBlock->getSingleSuccessor() &&
"should have split coro.suspend into its own block");
DomSet.insert(SuspendBlock->getSingleSuccessor());
}
for (Instruction &I : instructions(F)) {
if (!isa<AllocaInst>(&I))
continue;
for (BasicBlock *DomBB : DomSet) {
bool Valid = true;
SmallVector<Instruction *, 1> BCInsts;
auto isUsedByLifetimeStart = [&](Instruction *I) {
if (isa<BitCastInst>(I) && I->hasOneUse())
if (auto *IT = dyn_cast<IntrinsicInst>(I->user_back()))
return IT->getIntrinsicID() == Intrinsic::lifetime_start;
return false;
};
for (User *U : I.users()) {
Instruction *UI = cast<Instruction>(U);
// For all users except lifetime.start markers, if they are all
// dominated by one of the basic blocks and do not cross
// suspend points as well, then there is no need to spill the
// instruction.
if (!DT.dominates(DomBB, UI->getParent()) ||
Checker.isDefinitionAcrossSuspend(DomBB, U)) {
// Skip bitcast used by lifetime.start markers.
if (isUsedByLifetimeStart(UI)) {
BCInsts.push_back(UI);
continue;
}
Valid = false;
break;
}
}
// Sink lifetime.start markers to dominate block when they are
// only used outside the region.
if (Valid && BCInsts.size() != 0) {
auto *NewBitcast = BCInsts[0]->clone();
auto *NewLifetime = cast<Instruction>(BCInsts[0]->user_back())->clone();
NewLifetime->replaceUsesOfWith(BCInsts[0], NewBitcast);
NewBitcast->insertBefore(DomBB->getTerminator());
NewLifetime->insertBefore(DomBB->getTerminator());
// All the outsided lifetime.start markers are no longer necessary.
for (Instruction *S : BCInsts) {
S->user_back()->eraseFromParent();
}
break;
}
}
}
}
void coro::buildCoroutineFrame(Function &F, Shape &Shape) {
eliminateSwiftError(F, Shape);
if (Shape.ABI == coro::ABI::Switch &&
Shape.SwitchLowering.PromiseAlloca) {
Shape.getSwitchCoroId()->clearPromise();
}
// Make sure that all coro.save, coro.suspend and the fallthrough coro.end
// intrinsics are in their own blocks to simplify the logic of building up
// SuspendCrossing data.
for (auto *CSI : Shape.CoroSuspends) {
if (auto *Save = CSI->getCoroSave())
splitAround(Save, "CoroSave");
splitAround(CSI, "CoroSuspend");
}
// Put CoroEnds into their own blocks.
for (CoroEndInst *CE : Shape.CoroEnds)
splitAround(CE, "CoroEnd");
// Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
// never has its definition separated from the PHI by the suspend point.
rewritePHIs(F);
// Build suspend crossing info.
SuspendCrossingInfo Checker(F, Shape);
IRBuilder<> Builder(F.getContext());
SpillInfo Spills;
SmallVector<CoroAllocaAllocInst*, 4> LocalAllocas;
SmallVector<Instruction*, 4> DeadInstructions;
for (int Repeat = 0; Repeat < 4; ++Repeat) {
// See if there are materializable instructions across suspend points.
for (Instruction &I : instructions(F))
if (materializable(I))
for (User *U : I.users())
if (Checker.isDefinitionAcrossSuspend(I, U))
Spills.emplace_back(&I, U);
if (Spills.empty())
break;
// Rewrite materializable instructions to be materialized at the use point.
LLVM_DEBUG(dump("Materializations", Spills));
rewriteMaterializableInstructions(Builder, Spills);
Spills.clear();
}
sinkLifetimeStartMarkers(F, Shape, Checker);
// Collect lifetime.start info for each alloca.
using LifetimeStart = SmallPtrSet<Instruction *, 2>;
llvm::DenseMap<Instruction *, std::unique_ptr<LifetimeStart>> LifetimeMap;
for (Instruction &I : instructions(F)) {
auto *II = dyn_cast<IntrinsicInst>(&I);
if (!II || II->getIntrinsicID() != Intrinsic::lifetime_start)
continue;
if (auto *OpInst = dyn_cast<BitCastInst>(I.getOperand(1)))
if (auto *AI = dyn_cast<AllocaInst>(OpInst->getOperand(0))) {
if (LifetimeMap.find(AI) == LifetimeMap.end())
LifetimeMap[AI] = std::make_unique<LifetimeStart>();
LifetimeMap[AI]->insert(OpInst);
}
}
// Collect the spills for arguments and other not-materializable values.
for (Argument &A : F.args())
for (User *U : A.users())
if (Checker.isDefinitionAcrossSuspend(A, U))
Spills.emplace_back(&A, U);
for (Instruction &I : instructions(F)) {
// Values returned from coroutine structure intrinsics should not be part
// of the Coroutine Frame.
if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin)
continue;
// The Coroutine Promise always included into coroutine frame, no need to
// check for suspend crossing.
if (Shape.ABI == coro::ABI::Switch &&
Shape.SwitchLowering.PromiseAlloca == &I)
continue;
// Handle alloca.alloc specially here.
if (auto AI = dyn_cast<CoroAllocaAllocInst>(&I)) {
// Check whether the alloca's lifetime is bounded by suspend points.
if (isLocalAlloca(AI)) {
LocalAllocas.push_back(AI);
continue;
}
// If not, do a quick rewrite of the alloca and then add spills of
// the rewritten value. The rewrite doesn't invalidate anything in
// Spills because the other alloca intrinsics have no other operands
// besides AI, and it doesn't invalidate the iteration because we delay
// erasing AI.
auto Alloc = lowerNonLocalAlloca(AI, Shape, DeadInstructions);
for (User *U : Alloc->users()) {
if (Checker.isDefinitionAcrossSuspend(*Alloc, U))
Spills.emplace_back(Alloc, U);
}
continue;
}
// Ignore alloca.get; we process this as part of coro.alloca.alloc.
if (isa<CoroAllocaGetInst>(I)) {
continue;
}
auto Iter = LifetimeMap.find(&I);
for (User *U : I.users()) {
bool NeedSpill = false;
// Check against lifetime.start if the instruction has the info.
if (Iter != LifetimeMap.end())
for (auto *S : *Iter->second) {
if ((NeedSpill = Checker.isDefinitionAcrossSuspend(*S, U)))
break;
}
else
NeedSpill = Checker.isDefinitionAcrossSuspend(I, U);
if (NeedSpill) {
// We cannot spill a token.
if (I.getType()->isTokenTy())
report_fatal_error(
"token definition is separated from the use by a suspend point");
Spills.emplace_back(&I, U);
}
}
}
LLVM_DEBUG(dump("Spills", Spills));
if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce)
sinkSpillUsesAfterCoroBegin(F, Spills, Shape.CoroBegin);
Shape.FrameTy = buildFrameType(F, Shape, Spills);
Shape.FramePtr = insertSpills(Spills, Shape);
lowerLocalAllocas(LocalAllocas, DeadInstructions);
for (auto I : DeadInstructions)
I->eraseFromParent();
}
|