1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
|
//===- CoroSplit.cpp - Converts a coroutine into a state machine ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This pass builds the coroutine frame and outlines resume and destroy parts
// of the coroutine into separate functions.
//
// We present a coroutine to an LLVM as an ordinary function with suspension
// points marked up with intrinsics. We let the optimizer party on the coroutine
// as a single function for as long as possible. Shortly before the coroutine is
// eligible to be inlined into its callers, we split up the coroutine into parts
// corresponding to an initial, resume and destroy invocations of the coroutine,
// add them to the current SCC and restart the IPO pipeline to optimize the
// coroutine subfunctions we extracted before proceeding to the caller of the
// coroutine.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Coroutines/CoroSplit.h"
#include "CoroInstr.h"
#include "CoroInternal.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <initializer_list>
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "coro-split"
namespace {
/// A little helper class for building
class CoroCloner {
public:
enum class Kind {
/// The shared resume function for a switch lowering.
SwitchResume,
/// The shared unwind function for a switch lowering.
SwitchUnwind,
/// The shared cleanup function for a switch lowering.
SwitchCleanup,
/// An individual continuation function.
Continuation,
};
private:
Function &OrigF;
Function *NewF;
const Twine &Suffix;
coro::Shape &Shape;
Kind FKind;
ValueToValueMapTy VMap;
IRBuilder<> Builder;
Value *NewFramePtr = nullptr;
Value *SwiftErrorSlot = nullptr;
/// The active suspend instruction; meaningful only for continuation ABIs.
AnyCoroSuspendInst *ActiveSuspend = nullptr;
public:
/// Create a cloner for a switch lowering.
CoroCloner(Function &OrigF, const Twine &Suffix, coro::Shape &Shape,
Kind FKind)
: OrigF(OrigF), NewF(nullptr), Suffix(Suffix), Shape(Shape),
FKind(FKind), Builder(OrigF.getContext()) {
assert(Shape.ABI == coro::ABI::Switch);
}
/// Create a cloner for a continuation lowering.
CoroCloner(Function &OrigF, const Twine &Suffix, coro::Shape &Shape,
Function *NewF, AnyCoroSuspendInst *ActiveSuspend)
: OrigF(OrigF), NewF(NewF), Suffix(Suffix), Shape(Shape),
FKind(Kind::Continuation), Builder(OrigF.getContext()),
ActiveSuspend(ActiveSuspend) {
assert(Shape.ABI == coro::ABI::Retcon ||
Shape.ABI == coro::ABI::RetconOnce);
assert(NewF && "need existing function for continuation");
assert(ActiveSuspend && "need active suspend point for continuation");
}
Function *getFunction() const {
assert(NewF != nullptr && "declaration not yet set");
return NewF;
}
void create();
private:
bool isSwitchDestroyFunction() {
switch (FKind) {
case Kind::Continuation:
case Kind::SwitchResume:
return false;
case Kind::SwitchUnwind:
case Kind::SwitchCleanup:
return true;
}
llvm_unreachable("Unknown CoroCloner::Kind enum");
}
void createDeclaration();
void replaceEntryBlock();
Value *deriveNewFramePointer();
void replaceRetconSuspendUses();
void replaceCoroSuspends();
void replaceCoroEnds();
void replaceSwiftErrorOps();
void handleFinalSuspend();
void maybeFreeContinuationStorage();
};
} // end anonymous namespace
static void maybeFreeRetconStorage(IRBuilder<> &Builder,
const coro::Shape &Shape, Value *FramePtr,
CallGraph *CG) {
assert(Shape.ABI == coro::ABI::Retcon ||
Shape.ABI == coro::ABI::RetconOnce);
if (Shape.RetconLowering.IsFrameInlineInStorage)
return;
Shape.emitDealloc(Builder, FramePtr, CG);
}
/// Replace a non-unwind call to llvm.coro.end.
static void replaceFallthroughCoroEnd(CoroEndInst *End,
const coro::Shape &Shape, Value *FramePtr,
bool InResume, CallGraph *CG) {
// Start inserting right before the coro.end.
IRBuilder<> Builder(End);
// Create the return instruction.
switch (Shape.ABI) {
// The cloned functions in switch-lowering always return void.
case coro::ABI::Switch:
// coro.end doesn't immediately end the coroutine in the main function
// in this lowering, because we need to deallocate the coroutine.
if (!InResume)
return;
Builder.CreateRetVoid();
break;
// In unique continuation lowering, the continuations always return void.
// But we may have implicitly allocated storage.
case coro::ABI::RetconOnce:
maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
Builder.CreateRetVoid();
break;
// In non-unique continuation lowering, we signal completion by returning
// a null continuation.
case coro::ABI::Retcon: {
maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
auto RetTy = Shape.getResumeFunctionType()->getReturnType();
auto RetStructTy = dyn_cast<StructType>(RetTy);
PointerType *ContinuationTy =
cast<PointerType>(RetStructTy ? RetStructTy->getElementType(0) : RetTy);
Value *ReturnValue = ConstantPointerNull::get(ContinuationTy);
if (RetStructTy) {
ReturnValue = Builder.CreateInsertValue(UndefValue::get(RetStructTy),
ReturnValue, 0);
}
Builder.CreateRet(ReturnValue);
break;
}
}
// Remove the rest of the block, by splitting it into an unreachable block.
auto *BB = End->getParent();
BB->splitBasicBlock(End);
BB->getTerminator()->eraseFromParent();
}
/// Replace an unwind call to llvm.coro.end.
static void replaceUnwindCoroEnd(CoroEndInst *End, const coro::Shape &Shape,
Value *FramePtr, bool InResume, CallGraph *CG){
IRBuilder<> Builder(End);
switch (Shape.ABI) {
// In switch-lowering, this does nothing in the main function.
case coro::ABI::Switch:
if (!InResume)
return;
break;
// In continuation-lowering, this frees the continuation storage.
case coro::ABI::Retcon:
case coro::ABI::RetconOnce:
maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
break;
}
// If coro.end has an associated bundle, add cleanupret instruction.
if (auto Bundle = End->getOperandBundle(LLVMContext::OB_funclet)) {
auto *FromPad = cast<CleanupPadInst>(Bundle->Inputs[0]);
auto *CleanupRet = Builder.CreateCleanupRet(FromPad, nullptr);
End->getParent()->splitBasicBlock(End);
CleanupRet->getParent()->getTerminator()->eraseFromParent();
}
}
static void replaceCoroEnd(CoroEndInst *End, const coro::Shape &Shape,
Value *FramePtr, bool InResume, CallGraph *CG) {
if (End->isUnwind())
replaceUnwindCoroEnd(End, Shape, FramePtr, InResume, CG);
else
replaceFallthroughCoroEnd(End, Shape, FramePtr, InResume, CG);
auto &Context = End->getContext();
End->replaceAllUsesWith(InResume ? ConstantInt::getTrue(Context)
: ConstantInt::getFalse(Context));
End->eraseFromParent();
}
// Create an entry block for a resume function with a switch that will jump to
// suspend points.
static void createResumeEntryBlock(Function &F, coro::Shape &Shape) {
assert(Shape.ABI == coro::ABI::Switch);
LLVMContext &C = F.getContext();
// resume.entry:
// %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0,
// i32 2
// % index = load i32, i32* %index.addr
// switch i32 %index, label %unreachable [
// i32 0, label %resume.0
// i32 1, label %resume.1
// ...
// ]
auto *NewEntry = BasicBlock::Create(C, "resume.entry", &F);
auto *UnreachBB = BasicBlock::Create(C, "unreachable", &F);
IRBuilder<> Builder(NewEntry);
auto *FramePtr = Shape.FramePtr;
auto *FrameTy = Shape.FrameTy;
auto *GepIndex = Builder.CreateStructGEP(
FrameTy, FramePtr, Shape.getSwitchIndexField(), "index.addr");
auto *Index = Builder.CreateLoad(Shape.getIndexType(), GepIndex, "index");
auto *Switch =
Builder.CreateSwitch(Index, UnreachBB, Shape.CoroSuspends.size());
Shape.SwitchLowering.ResumeSwitch = Switch;
size_t SuspendIndex = 0;
for (auto *AnyS : Shape.CoroSuspends) {
auto *S = cast<CoroSuspendInst>(AnyS);
ConstantInt *IndexVal = Shape.getIndex(SuspendIndex);
// Replace CoroSave with a store to Index:
// %index.addr = getelementptr %f.frame... (index field number)
// store i32 0, i32* %index.addr1
auto *Save = S->getCoroSave();
Builder.SetInsertPoint(Save);
if (S->isFinal()) {
// Final suspend point is represented by storing zero in ResumeFnAddr.
auto *GepIndex = Builder.CreateStructGEP(FrameTy, FramePtr,
coro::Shape::SwitchFieldIndex::Resume,
"ResumeFn.addr");
auto *NullPtr = ConstantPointerNull::get(cast<PointerType>(
cast<PointerType>(GepIndex->getType())->getElementType()));
Builder.CreateStore(NullPtr, GepIndex);
} else {
auto *GepIndex = Builder.CreateStructGEP(
FrameTy, FramePtr, Shape.getSwitchIndexField(), "index.addr");
Builder.CreateStore(IndexVal, GepIndex);
}
Save->replaceAllUsesWith(ConstantTokenNone::get(C));
Save->eraseFromParent();
// Split block before and after coro.suspend and add a jump from an entry
// switch:
//
// whateverBB:
// whatever
// %0 = call i8 @llvm.coro.suspend(token none, i1 false)
// switch i8 %0, label %suspend[i8 0, label %resume
// i8 1, label %cleanup]
// becomes:
//
// whateverBB:
// whatever
// br label %resume.0.landing
//
// resume.0: ; <--- jump from the switch in the resume.entry
// %0 = tail call i8 @llvm.coro.suspend(token none, i1 false)
// br label %resume.0.landing
//
// resume.0.landing:
// %1 = phi i8[-1, %whateverBB], [%0, %resume.0]
// switch i8 % 1, label %suspend [i8 0, label %resume
// i8 1, label %cleanup]
auto *SuspendBB = S->getParent();
auto *ResumeBB =
SuspendBB->splitBasicBlock(S, "resume." + Twine(SuspendIndex));
auto *LandingBB = ResumeBB->splitBasicBlock(
S->getNextNode(), ResumeBB->getName() + Twine(".landing"));
Switch->addCase(IndexVal, ResumeBB);
cast<BranchInst>(SuspendBB->getTerminator())->setSuccessor(0, LandingBB);
auto *PN = PHINode::Create(Builder.getInt8Ty(), 2, "", &LandingBB->front());
S->replaceAllUsesWith(PN);
PN->addIncoming(Builder.getInt8(-1), SuspendBB);
PN->addIncoming(S, ResumeBB);
++SuspendIndex;
}
Builder.SetInsertPoint(UnreachBB);
Builder.CreateUnreachable();
Shape.SwitchLowering.ResumeEntryBlock = NewEntry;
}
// Rewrite final suspend point handling. We do not use suspend index to
// represent the final suspend point. Instead we zero-out ResumeFnAddr in the
// coroutine frame, since it is undefined behavior to resume a coroutine
// suspended at the final suspend point. Thus, in the resume function, we can
// simply remove the last case (when coro::Shape is built, the final suspend
// point (if present) is always the last element of CoroSuspends array).
// In the destroy function, we add a code sequence to check if ResumeFnAddress
// is Null, and if so, jump to the appropriate label to handle cleanup from the
// final suspend point.
void CoroCloner::handleFinalSuspend() {
assert(Shape.ABI == coro::ABI::Switch &&
Shape.SwitchLowering.HasFinalSuspend);
auto *Switch = cast<SwitchInst>(VMap[Shape.SwitchLowering.ResumeSwitch]);
auto FinalCaseIt = std::prev(Switch->case_end());
BasicBlock *ResumeBB = FinalCaseIt->getCaseSuccessor();
Switch->removeCase(FinalCaseIt);
if (isSwitchDestroyFunction()) {
BasicBlock *OldSwitchBB = Switch->getParent();
auto *NewSwitchBB = OldSwitchBB->splitBasicBlock(Switch, "Switch");
Builder.SetInsertPoint(OldSwitchBB->getTerminator());
auto *GepIndex = Builder.CreateStructGEP(Shape.FrameTy, NewFramePtr,
coro::Shape::SwitchFieldIndex::Resume,
"ResumeFn.addr");
auto *Load = Builder.CreateLoad(Shape.getSwitchResumePointerType(),
GepIndex);
auto *Cond = Builder.CreateIsNull(Load);
Builder.CreateCondBr(Cond, ResumeBB, NewSwitchBB);
OldSwitchBB->getTerminator()->eraseFromParent();
}
}
static Function *createCloneDeclaration(Function &OrigF, coro::Shape &Shape,
const Twine &Suffix,
Module::iterator InsertBefore) {
Module *M = OrigF.getParent();
auto *FnTy = Shape.getResumeFunctionType();
Function *NewF =
Function::Create(FnTy, GlobalValue::LinkageTypes::InternalLinkage,
OrigF.getName() + Suffix);
NewF->addParamAttr(0, Attribute::NonNull);
NewF->addParamAttr(0, Attribute::NoAlias);
M->getFunctionList().insert(InsertBefore, NewF);
return NewF;
}
/// Replace uses of the active llvm.coro.suspend.retcon call with the
/// arguments to the continuation function.
///
/// This assumes that the builder has a meaningful insertion point.
void CoroCloner::replaceRetconSuspendUses() {
assert(Shape.ABI == coro::ABI::Retcon ||
Shape.ABI == coro::ABI::RetconOnce);
auto NewS = VMap[ActiveSuspend];
if (NewS->use_empty()) return;
// Copy out all the continuation arguments after the buffer pointer into
// an easily-indexed data structure for convenience.
SmallVector<Value*, 8> Args;
for (auto I = std::next(NewF->arg_begin()), E = NewF->arg_end(); I != E; ++I)
Args.push_back(&*I);
// If the suspend returns a single scalar value, we can just do a simple
// replacement.
if (!isa<StructType>(NewS->getType())) {
assert(Args.size() == 1);
NewS->replaceAllUsesWith(Args.front());
return;
}
// Try to peephole extracts of an aggregate return.
for (auto UI = NewS->use_begin(), UE = NewS->use_end(); UI != UE; ) {
auto EVI = dyn_cast<ExtractValueInst>((UI++)->getUser());
if (!EVI || EVI->getNumIndices() != 1)
continue;
EVI->replaceAllUsesWith(Args[EVI->getIndices().front()]);
EVI->eraseFromParent();
}
// If we have no remaining uses, we're done.
if (NewS->use_empty()) return;
// Otherwise, we need to create an aggregate.
Value *Agg = UndefValue::get(NewS->getType());
for (size_t I = 0, E = Args.size(); I != E; ++I)
Agg = Builder.CreateInsertValue(Agg, Args[I], I);
NewS->replaceAllUsesWith(Agg);
}
void CoroCloner::replaceCoroSuspends() {
Value *SuspendResult;
switch (Shape.ABI) {
// In switch lowering, replace coro.suspend with the appropriate value
// for the type of function we're extracting.
// Replacing coro.suspend with (0) will result in control flow proceeding to
// a resume label associated with a suspend point, replacing it with (1) will
// result in control flow proceeding to a cleanup label associated with this
// suspend point.
case coro::ABI::Switch:
SuspendResult = Builder.getInt8(isSwitchDestroyFunction() ? 1 : 0);
break;
// In returned-continuation lowering, the arguments from earlier
// continuations are theoretically arbitrary, and they should have been
// spilled.
case coro::ABI::RetconOnce:
case coro::ABI::Retcon:
return;
}
for (AnyCoroSuspendInst *CS : Shape.CoroSuspends) {
// The active suspend was handled earlier.
if (CS == ActiveSuspend) continue;
auto *MappedCS = cast<AnyCoroSuspendInst>(VMap[CS]);
MappedCS->replaceAllUsesWith(SuspendResult);
MappedCS->eraseFromParent();
}
}
void CoroCloner::replaceCoroEnds() {
for (CoroEndInst *CE : Shape.CoroEnds) {
// We use a null call graph because there's no call graph node for
// the cloned function yet. We'll just be rebuilding that later.
auto NewCE = cast<CoroEndInst>(VMap[CE]);
replaceCoroEnd(NewCE, Shape, NewFramePtr, /*in resume*/ true, nullptr);
}
}
static void replaceSwiftErrorOps(Function &F, coro::Shape &Shape,
ValueToValueMapTy *VMap) {
Value *CachedSlot = nullptr;
auto getSwiftErrorSlot = [&](Type *ValueTy) -> Value * {
if (CachedSlot) {
assert(CachedSlot->getType()->getPointerElementType() == ValueTy &&
"multiple swifterror slots in function with different types");
return CachedSlot;
}
// Check if the function has a swifterror argument.
for (auto &Arg : F.args()) {
if (Arg.isSwiftError()) {
CachedSlot = &Arg;
assert(Arg.getType()->getPointerElementType() == ValueTy &&
"swifterror argument does not have expected type");
return &Arg;
}
}
// Create a swifterror alloca.
IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg());
auto Alloca = Builder.CreateAlloca(ValueTy);
Alloca->setSwiftError(true);
CachedSlot = Alloca;
return Alloca;
};
for (CallInst *Op : Shape.SwiftErrorOps) {
auto MappedOp = VMap ? cast<CallInst>((*VMap)[Op]) : Op;
IRBuilder<> Builder(MappedOp);
// If there are no arguments, this is a 'get' operation.
Value *MappedResult;
if (Op->getNumArgOperands() == 0) {
auto ValueTy = Op->getType();
auto Slot = getSwiftErrorSlot(ValueTy);
MappedResult = Builder.CreateLoad(ValueTy, Slot);
} else {
assert(Op->getNumArgOperands() == 1);
auto Value = MappedOp->getArgOperand(0);
auto ValueTy = Value->getType();
auto Slot = getSwiftErrorSlot(ValueTy);
Builder.CreateStore(Value, Slot);
MappedResult = Slot;
}
MappedOp->replaceAllUsesWith(MappedResult);
MappedOp->eraseFromParent();
}
// If we're updating the original function, we've invalidated SwiftErrorOps.
if (VMap == nullptr) {
Shape.SwiftErrorOps.clear();
}
}
void CoroCloner::replaceSwiftErrorOps() {
::replaceSwiftErrorOps(*NewF, Shape, &VMap);
}
void CoroCloner::replaceEntryBlock() {
// In the original function, the AllocaSpillBlock is a block immediately
// following the allocation of the frame object which defines GEPs for
// all the allocas that have been moved into the frame, and it ends by
// branching to the original beginning of the coroutine. Make this
// the entry block of the cloned function.
auto *Entry = cast<BasicBlock>(VMap[Shape.AllocaSpillBlock]);
auto *OldEntry = &NewF->getEntryBlock();
Entry->setName("entry" + Suffix);
Entry->moveBefore(OldEntry);
Entry->getTerminator()->eraseFromParent();
// Clear all predecessors of the new entry block. There should be
// exactly one predecessor, which we created when splitting out
// AllocaSpillBlock to begin with.
assert(Entry->hasOneUse());
auto BranchToEntry = cast<BranchInst>(Entry->user_back());
assert(BranchToEntry->isUnconditional());
Builder.SetInsertPoint(BranchToEntry);
Builder.CreateUnreachable();
BranchToEntry->eraseFromParent();
// Move any allocas into Entry that weren't moved into the frame.
for (auto IT = OldEntry->begin(), End = OldEntry->end(); IT != End;) {
Instruction &I = *IT++;
if (!isa<AllocaInst>(&I) || I.use_empty())
continue;
I.moveBefore(*Entry, Entry->getFirstInsertionPt());
}
// Branch from the entry to the appropriate place.
Builder.SetInsertPoint(Entry);
switch (Shape.ABI) {
case coro::ABI::Switch: {
// In switch-lowering, we built a resume-entry block in the original
// function. Make the entry block branch to this.
auto *SwitchBB =
cast<BasicBlock>(VMap[Shape.SwitchLowering.ResumeEntryBlock]);
Builder.CreateBr(SwitchBB);
break;
}
case coro::ABI::Retcon:
case coro::ABI::RetconOnce: {
// In continuation ABIs, we want to branch to immediately after the
// active suspend point. Earlier phases will have put the suspend in its
// own basic block, so just thread our jump directly to its successor.
auto MappedCS = cast<CoroSuspendRetconInst>(VMap[ActiveSuspend]);
auto Branch = cast<BranchInst>(MappedCS->getNextNode());
assert(Branch->isUnconditional());
Builder.CreateBr(Branch->getSuccessor(0));
break;
}
}
}
/// Derive the value of the new frame pointer.
Value *CoroCloner::deriveNewFramePointer() {
// Builder should be inserting to the front of the new entry block.
switch (Shape.ABI) {
// In switch-lowering, the argument is the frame pointer.
case coro::ABI::Switch:
return &*NewF->arg_begin();
// In continuation-lowering, the argument is the opaque storage.
case coro::ABI::Retcon:
case coro::ABI::RetconOnce: {
Argument *NewStorage = &*NewF->arg_begin();
auto FramePtrTy = Shape.FrameTy->getPointerTo();
// If the storage is inline, just bitcast to the storage to the frame type.
if (Shape.RetconLowering.IsFrameInlineInStorage)
return Builder.CreateBitCast(NewStorage, FramePtrTy);
// Otherwise, load the real frame from the opaque storage.
auto FramePtrPtr =
Builder.CreateBitCast(NewStorage, FramePtrTy->getPointerTo());
return Builder.CreateLoad(FramePtrTy, FramePtrPtr);
}
}
llvm_unreachable("bad ABI");
}
static void addFramePointerAttrs(AttributeList &Attrs, LLVMContext &Context,
unsigned ParamIndex,
uint64_t Size, Align Alignment) {
AttrBuilder ParamAttrs;
ParamAttrs.addAttribute(Attribute::NonNull);
ParamAttrs.addAttribute(Attribute::NoAlias);
ParamAttrs.addAlignmentAttr(Alignment);
ParamAttrs.addDereferenceableAttr(Size);
Attrs = Attrs.addParamAttributes(Context, ParamIndex, ParamAttrs);
}
/// Clone the body of the original function into a resume function of
/// some sort.
void CoroCloner::create() {
// Create the new function if we don't already have one.
if (!NewF) {
NewF = createCloneDeclaration(OrigF, Shape, Suffix,
OrigF.getParent()->end());
}
// Replace all args with undefs. The buildCoroutineFrame algorithm already
// rewritten access to the args that occurs after suspend points with loads
// and stores to/from the coroutine frame.
for (Argument &A : OrigF.args())
VMap[&A] = UndefValue::get(A.getType());
SmallVector<ReturnInst *, 4> Returns;
// Ignore attempts to change certain attributes of the function.
// TODO: maybe there should be a way to suppress this during cloning?
auto savedVisibility = NewF->getVisibility();
auto savedUnnamedAddr = NewF->getUnnamedAddr();
auto savedDLLStorageClass = NewF->getDLLStorageClass();
// NewF's linkage (which CloneFunctionInto does *not* change) might not
// be compatible with the visibility of OrigF (which it *does* change),
// so protect against that.
auto savedLinkage = NewF->getLinkage();
NewF->setLinkage(llvm::GlobalValue::ExternalLinkage);
CloneFunctionInto(NewF, &OrigF, VMap, /*ModuleLevelChanges=*/true, Returns);
NewF->setLinkage(savedLinkage);
NewF->setVisibility(savedVisibility);
NewF->setUnnamedAddr(savedUnnamedAddr);
NewF->setDLLStorageClass(savedDLLStorageClass);
auto &Context = NewF->getContext();
// Replace the attributes of the new function:
auto OrigAttrs = NewF->getAttributes();
auto NewAttrs = AttributeList();
switch (Shape.ABI) {
case coro::ABI::Switch:
// Bootstrap attributes by copying function attributes from the
// original function. This should include optimization settings and so on.
NewAttrs = NewAttrs.addAttributes(Context, AttributeList::FunctionIndex,
OrigAttrs.getFnAttributes());
addFramePointerAttrs(NewAttrs, Context, 0,
Shape.FrameSize, Shape.FrameAlign);
break;
case coro::ABI::Retcon:
case coro::ABI::RetconOnce:
// If we have a continuation prototype, just use its attributes,
// full-stop.
NewAttrs = Shape.RetconLowering.ResumePrototype->getAttributes();
addFramePointerAttrs(NewAttrs, Context, 0,
Shape.getRetconCoroId()->getStorageSize(),
Shape.getRetconCoroId()->getStorageAlignment());
break;
}
switch (Shape.ABI) {
// In these ABIs, the cloned functions always return 'void', and the
// existing return sites are meaningless. Note that for unique
// continuations, this includes the returns associated with suspends;
// this is fine because we can't suspend twice.
case coro::ABI::Switch:
case coro::ABI::RetconOnce:
// Remove old returns.
for (ReturnInst *Return : Returns)
changeToUnreachable(Return, /*UseLLVMTrap=*/false);
break;
// With multi-suspend continuations, we'll already have eliminated the
// original returns and inserted returns before all the suspend points,
// so we want to leave any returns in place.
case coro::ABI::Retcon:
break;
}
NewF->setAttributes(NewAttrs);
NewF->setCallingConv(Shape.getResumeFunctionCC());
// Set up the new entry block.
replaceEntryBlock();
Builder.SetInsertPoint(&NewF->getEntryBlock().front());
NewFramePtr = deriveNewFramePointer();
// Remap frame pointer.
Value *OldFramePtr = VMap[Shape.FramePtr];
NewFramePtr->takeName(OldFramePtr);
OldFramePtr->replaceAllUsesWith(NewFramePtr);
// Remap vFrame pointer.
auto *NewVFrame = Builder.CreateBitCast(
NewFramePtr, Type::getInt8PtrTy(Builder.getContext()), "vFrame");
Value *OldVFrame = cast<Value>(VMap[Shape.CoroBegin]);
OldVFrame->replaceAllUsesWith(NewVFrame);
switch (Shape.ABI) {
case coro::ABI::Switch:
// Rewrite final suspend handling as it is not done via switch (allows to
// remove final case from the switch, since it is undefined behavior to
// resume the coroutine suspended at the final suspend point.
if (Shape.SwitchLowering.HasFinalSuspend)
handleFinalSuspend();
break;
case coro::ABI::Retcon:
case coro::ABI::RetconOnce:
// Replace uses of the active suspend with the corresponding
// continuation-function arguments.
assert(ActiveSuspend != nullptr &&
"no active suspend when lowering a continuation-style coroutine");
replaceRetconSuspendUses();
break;
}
// Handle suspends.
replaceCoroSuspends();
// Handle swifterror.
replaceSwiftErrorOps();
// Remove coro.end intrinsics.
replaceCoroEnds();
// Eliminate coro.free from the clones, replacing it with 'null' in cleanup,
// to suppress deallocation code.
if (Shape.ABI == coro::ABI::Switch)
coro::replaceCoroFree(cast<CoroIdInst>(VMap[Shape.CoroBegin->getId()]),
/*Elide=*/ FKind == CoroCloner::Kind::SwitchCleanup);
}
// Create a resume clone by cloning the body of the original function, setting
// new entry block and replacing coro.suspend an appropriate value to force
// resume or cleanup pass for every suspend point.
static Function *createClone(Function &F, const Twine &Suffix,
coro::Shape &Shape, CoroCloner::Kind FKind) {
CoroCloner Cloner(F, Suffix, Shape, FKind);
Cloner.create();
return Cloner.getFunction();
}
/// Remove calls to llvm.coro.end in the original function.
static void removeCoroEnds(const coro::Shape &Shape, CallGraph *CG) {
for (auto End : Shape.CoroEnds) {
replaceCoroEnd(End, Shape, Shape.FramePtr, /*in resume*/ false, CG);
}
}
static void replaceFrameSize(coro::Shape &Shape) {
if (Shape.CoroSizes.empty())
return;
// In the same function all coro.sizes should have the same result type.
auto *SizeIntrin = Shape.CoroSizes.back();
Module *M = SizeIntrin->getModule();
const DataLayout &DL = M->getDataLayout();
auto Size = DL.getTypeAllocSize(Shape.FrameTy);
auto *SizeConstant = ConstantInt::get(SizeIntrin->getType(), Size);
for (CoroSizeInst *CS : Shape.CoroSizes) {
CS->replaceAllUsesWith(SizeConstant);
CS->eraseFromParent();
}
}
// Create a global constant array containing pointers to functions provided and
// set Info parameter of CoroBegin to point at this constant. Example:
//
// @f.resumers = internal constant [2 x void(%f.frame*)*]
// [void(%f.frame*)* @f.resume, void(%f.frame*)* @f.destroy]
// define void @f() {
// ...
// call i8* @llvm.coro.begin(i8* null, i32 0, i8* null,
// i8* bitcast([2 x void(%f.frame*)*] * @f.resumers to i8*))
//
// Assumes that all the functions have the same signature.
static void setCoroInfo(Function &F, coro::Shape &Shape,
ArrayRef<Function *> Fns) {
// This only works under the switch-lowering ABI because coro elision
// only works on the switch-lowering ABI.
assert(Shape.ABI == coro::ABI::Switch);
SmallVector<Constant *, 4> Args(Fns.begin(), Fns.end());
assert(!Args.empty());
Function *Part = *Fns.begin();
Module *M = Part->getParent();
auto *ArrTy = ArrayType::get(Part->getType(), Args.size());
auto *ConstVal = ConstantArray::get(ArrTy, Args);
auto *GV = new GlobalVariable(*M, ConstVal->getType(), /*isConstant=*/true,
GlobalVariable::PrivateLinkage, ConstVal,
F.getName() + Twine(".resumers"));
// Update coro.begin instruction to refer to this constant.
LLVMContext &C = F.getContext();
auto *BC = ConstantExpr::getPointerCast(GV, Type::getInt8PtrTy(C));
Shape.getSwitchCoroId()->setInfo(BC);
}
// Store addresses of Resume/Destroy/Cleanup functions in the coroutine frame.
static void updateCoroFrame(coro::Shape &Shape, Function *ResumeFn,
Function *DestroyFn, Function *CleanupFn) {
assert(Shape.ABI == coro::ABI::Switch);
IRBuilder<> Builder(Shape.FramePtr->getNextNode());
auto *ResumeAddr = Builder.CreateStructGEP(
Shape.FrameTy, Shape.FramePtr, coro::Shape::SwitchFieldIndex::Resume,
"resume.addr");
Builder.CreateStore(ResumeFn, ResumeAddr);
Value *DestroyOrCleanupFn = DestroyFn;
CoroIdInst *CoroId = Shape.getSwitchCoroId();
if (CoroAllocInst *CA = CoroId->getCoroAlloc()) {
// If there is a CoroAlloc and it returns false (meaning we elide the
// allocation, use CleanupFn instead of DestroyFn).
DestroyOrCleanupFn = Builder.CreateSelect(CA, DestroyFn, CleanupFn);
}
auto *DestroyAddr = Builder.CreateStructGEP(
Shape.FrameTy, Shape.FramePtr, coro::Shape::SwitchFieldIndex::Destroy,
"destroy.addr");
Builder.CreateStore(DestroyOrCleanupFn, DestroyAddr);
}
static void postSplitCleanup(Function &F) {
removeUnreachableBlocks(F);
// For now, we do a mandatory verification step because we don't
// entirely trust this pass. Note that we don't want to add a verifier
// pass to FPM below because it will also verify all the global data.
if (verifyFunction(F, &errs()))
report_fatal_error("Broken function");
legacy::FunctionPassManager FPM(F.getParent());
FPM.add(createSCCPPass());
FPM.add(createCFGSimplificationPass());
FPM.add(createEarlyCSEPass());
FPM.add(createCFGSimplificationPass());
FPM.doInitialization();
FPM.run(F);
FPM.doFinalization();
}
// Assuming we arrived at the block NewBlock from Prev instruction, store
// PHI's incoming values in the ResolvedValues map.
static void
scanPHIsAndUpdateValueMap(Instruction *Prev, BasicBlock *NewBlock,
DenseMap<Value *, Value *> &ResolvedValues) {
auto *PrevBB = Prev->getParent();
for (PHINode &PN : NewBlock->phis()) {
auto V = PN.getIncomingValueForBlock(PrevBB);
// See if we already resolved it.
auto VI = ResolvedValues.find(V);
if (VI != ResolvedValues.end())
V = VI->second;
// Remember the value.
ResolvedValues[&PN] = V;
}
}
// Replace a sequence of branches leading to a ret, with a clone of a ret
// instruction. Suspend instruction represented by a switch, track the PHI
// values and select the correct case successor when possible.
static bool simplifyTerminatorLeadingToRet(Instruction *InitialInst) {
DenseMap<Value *, Value *> ResolvedValues;
BasicBlock *UnconditionalSucc = nullptr;
Instruction *I = InitialInst;
while (I->isTerminator() ||
(isa<CmpInst>(I) && I->getNextNode()->isTerminator())) {
if (isa<ReturnInst>(I)) {
if (I != InitialInst) {
// If InitialInst is an unconditional branch,
// remove PHI values that come from basic block of InitialInst
if (UnconditionalSucc)
UnconditionalSucc->removePredecessor(InitialInst->getParent(), true);
ReplaceInstWithInst(InitialInst, I->clone());
}
return true;
}
if (auto *BR = dyn_cast<BranchInst>(I)) {
if (BR->isUnconditional()) {
BasicBlock *BB = BR->getSuccessor(0);
if (I == InitialInst)
UnconditionalSucc = BB;
scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
I = BB->getFirstNonPHIOrDbgOrLifetime();
continue;
}
} else if (auto *CondCmp = dyn_cast<CmpInst>(I)) {
auto *BR = dyn_cast<BranchInst>(I->getNextNode());
if (BR && BR->isConditional() && CondCmp == BR->getCondition()) {
// If the case number of suspended switch instruction is reduced to
// 1, then it is simplified to CmpInst in llvm::ConstantFoldTerminator.
// And the comparsion looks like : %cond = icmp eq i8 %V, constant.
ConstantInt *CondConst = dyn_cast<ConstantInt>(CondCmp->getOperand(1));
if (CondConst && CondCmp->getPredicate() == CmpInst::ICMP_EQ) {
Value *V = CondCmp->getOperand(0);
auto it = ResolvedValues.find(V);
if (it != ResolvedValues.end())
V = it->second;
if (ConstantInt *Cond0 = dyn_cast<ConstantInt>(V)) {
BasicBlock *BB = Cond0->equalsInt(CondConst->getZExtValue())
? BR->getSuccessor(0)
: BR->getSuccessor(1);
scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
I = BB->getFirstNonPHIOrDbgOrLifetime();
continue;
}
}
}
} else if (auto *SI = dyn_cast<SwitchInst>(I)) {
Value *V = SI->getCondition();
auto it = ResolvedValues.find(V);
if (it != ResolvedValues.end())
V = it->second;
if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
BasicBlock *BB = SI->findCaseValue(Cond)->getCaseSuccessor();
scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
I = BB->getFirstNonPHIOrDbgOrLifetime();
continue;
}
}
return false;
}
return false;
}
// Check whether CI obeys the rules of musttail attribute.
static bool shouldBeMustTail(const CallInst &CI, const Function &F) {
if (CI.isInlineAsm())
return false;
// Match prototypes and calling conventions of resume function.
FunctionType *CalleeTy = CI.getFunctionType();
if (!CalleeTy->getReturnType()->isVoidTy() || (CalleeTy->getNumParams() != 1))
return false;
Type *CalleeParmTy = CalleeTy->getParamType(0);
if (!CalleeParmTy->isPointerTy() ||
(CalleeParmTy->getPointerAddressSpace() != 0))
return false;
if (CI.getCallingConv() != F.getCallingConv())
return false;
// CI should not has any ABI-impacting function attributes.
static const Attribute::AttrKind ABIAttrs[] = {
Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
Attribute::Preallocated, Attribute::InReg, Attribute::Returned,
Attribute::SwiftSelf, Attribute::SwiftError};
AttributeList Attrs = CI.getAttributes();
for (auto AK : ABIAttrs)
if (Attrs.hasParamAttribute(0, AK))
return false;
return true;
}
// Add musttail to any resume instructions that is immediately followed by a
// suspend (i.e. ret). We do this even in -O0 to support guaranteed tail call
// for symmetrical coroutine control transfer (C++ Coroutines TS extension).
// This transformation is done only in the resume part of the coroutine that has
// identical signature and calling convention as the coro.resume call.
static void addMustTailToCoroResumes(Function &F) {
bool changed = false;
// Collect potential resume instructions.
SmallVector<CallInst *, 4> Resumes;
for (auto &I : instructions(F))
if (auto *Call = dyn_cast<CallInst>(&I))
if (shouldBeMustTail(*Call, F))
Resumes.push_back(Call);
// Set musttail on those that are followed by a ret instruction.
for (CallInst *Call : Resumes)
if (simplifyTerminatorLeadingToRet(Call->getNextNode())) {
Call->setTailCallKind(CallInst::TCK_MustTail);
changed = true;
}
if (changed)
removeUnreachableBlocks(F);
}
// Coroutine has no suspend points. Remove heap allocation for the coroutine
// frame if possible.
static void handleNoSuspendCoroutine(coro::Shape &Shape) {
auto *CoroBegin = Shape.CoroBegin;
auto *CoroId = CoroBegin->getId();
auto *AllocInst = CoroId->getCoroAlloc();
switch (Shape.ABI) {
case coro::ABI::Switch: {
auto SwitchId = cast<CoroIdInst>(CoroId);
coro::replaceCoroFree(SwitchId, /*Elide=*/AllocInst != nullptr);
if (AllocInst) {
IRBuilder<> Builder(AllocInst);
auto *Frame = Builder.CreateAlloca(Shape.FrameTy);
Frame->setAlignment(Shape.FrameAlign);
auto *VFrame = Builder.CreateBitCast(Frame, Builder.getInt8PtrTy());
AllocInst->replaceAllUsesWith(Builder.getFalse());
AllocInst->eraseFromParent();
CoroBegin->replaceAllUsesWith(VFrame);
} else {
CoroBegin->replaceAllUsesWith(CoroBegin->getMem());
}
break;
}
case coro::ABI::Retcon:
case coro::ABI::RetconOnce:
CoroBegin->replaceAllUsesWith(UndefValue::get(CoroBegin->getType()));
break;
}
CoroBegin->eraseFromParent();
}
// SimplifySuspendPoint needs to check that there is no calls between
// coro_save and coro_suspend, since any of the calls may potentially resume
// the coroutine and if that is the case we cannot eliminate the suspend point.
static bool hasCallsInBlockBetween(Instruction *From, Instruction *To) {
for (Instruction *I = From; I != To; I = I->getNextNode()) {
// Assume that no intrinsic can resume the coroutine.
if (isa<IntrinsicInst>(I))
continue;
if (isa<CallBase>(I))
return true;
}
return false;
}
static bool hasCallsInBlocksBetween(BasicBlock *SaveBB, BasicBlock *ResDesBB) {
SmallPtrSet<BasicBlock *, 8> Set;
SmallVector<BasicBlock *, 8> Worklist;
Set.insert(SaveBB);
Worklist.push_back(ResDesBB);
// Accumulate all blocks between SaveBB and ResDesBB. Because CoroSaveIntr
// returns a token consumed by suspend instruction, all blocks in between
// will have to eventually hit SaveBB when going backwards from ResDesBB.
while (!Worklist.empty()) {
auto *BB = Worklist.pop_back_val();
Set.insert(BB);
for (auto *Pred : predecessors(BB))
if (Set.count(Pred) == 0)
Worklist.push_back(Pred);
}
// SaveBB and ResDesBB are checked separately in hasCallsBetween.
Set.erase(SaveBB);
Set.erase(ResDesBB);
for (auto *BB : Set)
if (hasCallsInBlockBetween(BB->getFirstNonPHI(), nullptr))
return true;
return false;
}
static bool hasCallsBetween(Instruction *Save, Instruction *ResumeOrDestroy) {
auto *SaveBB = Save->getParent();
auto *ResumeOrDestroyBB = ResumeOrDestroy->getParent();
if (SaveBB == ResumeOrDestroyBB)
return hasCallsInBlockBetween(Save->getNextNode(), ResumeOrDestroy);
// Any calls from Save to the end of the block?
if (hasCallsInBlockBetween(Save->getNextNode(), nullptr))
return true;
// Any calls from begging of the block up to ResumeOrDestroy?
if (hasCallsInBlockBetween(ResumeOrDestroyBB->getFirstNonPHI(),
ResumeOrDestroy))
return true;
// Any calls in all of the blocks between SaveBB and ResumeOrDestroyBB?
if (hasCallsInBlocksBetween(SaveBB, ResumeOrDestroyBB))
return true;
return false;
}
// If a SuspendIntrin is preceded by Resume or Destroy, we can eliminate the
// suspend point and replace it with nornal control flow.
static bool simplifySuspendPoint(CoroSuspendInst *Suspend,
CoroBeginInst *CoroBegin) {
Instruction *Prev = Suspend->getPrevNode();
if (!Prev) {
auto *Pred = Suspend->getParent()->getSinglePredecessor();
if (!Pred)
return false;
Prev = Pred->getTerminator();
}
CallBase *CB = dyn_cast<CallBase>(Prev);
if (!CB)
return false;
auto *Callee = CB->getCalledOperand()->stripPointerCasts();
// See if the callsite is for resumption or destruction of the coroutine.
auto *SubFn = dyn_cast<CoroSubFnInst>(Callee);
if (!SubFn)
return false;
// Does not refer to the current coroutine, we cannot do anything with it.
if (SubFn->getFrame() != CoroBegin)
return false;
// See if the transformation is safe. Specifically, see if there are any
// calls in between Save and CallInstr. They can potenitally resume the
// coroutine rendering this optimization unsafe.
auto *Save = Suspend->getCoroSave();
if (hasCallsBetween(Save, CB))
return false;
// Replace llvm.coro.suspend with the value that results in resumption over
// the resume or cleanup path.
Suspend->replaceAllUsesWith(SubFn->getRawIndex());
Suspend->eraseFromParent();
Save->eraseFromParent();
// No longer need a call to coro.resume or coro.destroy.
if (auto *Invoke = dyn_cast<InvokeInst>(CB)) {
BranchInst::Create(Invoke->getNormalDest(), Invoke);
}
// Grab the CalledValue from CB before erasing the CallInstr.
auto *CalledValue = CB->getCalledOperand();
CB->eraseFromParent();
// If no more users remove it. Usually it is a bitcast of SubFn.
if (CalledValue != SubFn && CalledValue->user_empty())
if (auto *I = dyn_cast<Instruction>(CalledValue))
I->eraseFromParent();
// Now we are good to remove SubFn.
if (SubFn->user_empty())
SubFn->eraseFromParent();
return true;
}
// Remove suspend points that are simplified.
static void simplifySuspendPoints(coro::Shape &Shape) {
// Currently, the only simplification we do is switch-lowering-specific.
if (Shape.ABI != coro::ABI::Switch)
return;
auto &S = Shape.CoroSuspends;
size_t I = 0, N = S.size();
if (N == 0)
return;
while (true) {
auto SI = cast<CoroSuspendInst>(S[I]);
// Leave final.suspend to handleFinalSuspend since it is undefined behavior
// to resume a coroutine suspended at the final suspend point.
if (!SI->isFinal() && simplifySuspendPoint(SI, Shape.CoroBegin)) {
if (--N == I)
break;
std::swap(S[I], S[N]);
continue;
}
if (++I == N)
break;
}
S.resize(N);
}
static void splitSwitchCoroutine(Function &F, coro::Shape &Shape,
SmallVectorImpl<Function *> &Clones) {
assert(Shape.ABI == coro::ABI::Switch);
createResumeEntryBlock(F, Shape);
auto ResumeClone = createClone(F, ".resume", Shape,
CoroCloner::Kind::SwitchResume);
auto DestroyClone = createClone(F, ".destroy", Shape,
CoroCloner::Kind::SwitchUnwind);
auto CleanupClone = createClone(F, ".cleanup", Shape,
CoroCloner::Kind::SwitchCleanup);
postSplitCleanup(*ResumeClone);
postSplitCleanup(*DestroyClone);
postSplitCleanup(*CleanupClone);
addMustTailToCoroResumes(*ResumeClone);
// Store addresses resume/destroy/cleanup functions in the coroutine frame.
updateCoroFrame(Shape, ResumeClone, DestroyClone, CleanupClone);
assert(Clones.empty());
Clones.push_back(ResumeClone);
Clones.push_back(DestroyClone);
Clones.push_back(CleanupClone);
// Create a constant array referring to resume/destroy/clone functions pointed
// by the last argument of @llvm.coro.info, so that CoroElide pass can
// determined correct function to call.
setCoroInfo(F, Shape, Clones);
}
static void splitRetconCoroutine(Function &F, coro::Shape &Shape,
SmallVectorImpl<Function *> &Clones) {
assert(Shape.ABI == coro::ABI::Retcon ||
Shape.ABI == coro::ABI::RetconOnce);
assert(Clones.empty());
// Reset various things that the optimizer might have decided it
// "knows" about the coroutine function due to not seeing a return.
F.removeFnAttr(Attribute::NoReturn);
F.removeAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
F.removeAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
// Allocate the frame.
auto *Id = cast<AnyCoroIdRetconInst>(Shape.CoroBegin->getId());
Value *RawFramePtr;
if (Shape.RetconLowering.IsFrameInlineInStorage) {
RawFramePtr = Id->getStorage();
} else {
IRBuilder<> Builder(Id);
// Determine the size of the frame.
const DataLayout &DL = F.getParent()->getDataLayout();
auto Size = DL.getTypeAllocSize(Shape.FrameTy);
// Allocate. We don't need to update the call graph node because we're
// going to recompute it from scratch after splitting.
// FIXME: pass the required alignment
RawFramePtr = Shape.emitAlloc(Builder, Builder.getInt64(Size), nullptr);
RawFramePtr =
Builder.CreateBitCast(RawFramePtr, Shape.CoroBegin->getType());
// Stash the allocated frame pointer in the continuation storage.
auto Dest = Builder.CreateBitCast(Id->getStorage(),
RawFramePtr->getType()->getPointerTo());
Builder.CreateStore(RawFramePtr, Dest);
}
// Map all uses of llvm.coro.begin to the allocated frame pointer.
{
// Make sure we don't invalidate Shape.FramePtr.
TrackingVH<Instruction> Handle(Shape.FramePtr);
Shape.CoroBegin->replaceAllUsesWith(RawFramePtr);
Shape.FramePtr = Handle.getValPtr();
}
// Create a unique return block.
BasicBlock *ReturnBB = nullptr;
SmallVector<PHINode *, 4> ReturnPHIs;
// Create all the functions in order after the main function.
auto NextF = std::next(F.getIterator());
// Create a continuation function for each of the suspend points.
Clones.reserve(Shape.CoroSuspends.size());
for (size_t i = 0, e = Shape.CoroSuspends.size(); i != e; ++i) {
auto Suspend = cast<CoroSuspendRetconInst>(Shape.CoroSuspends[i]);
// Create the clone declaration.
auto Continuation =
createCloneDeclaration(F, Shape, ".resume." + Twine(i), NextF);
Clones.push_back(Continuation);
// Insert a branch to the unified return block immediately before
// the suspend point.
auto SuspendBB = Suspend->getParent();
auto NewSuspendBB = SuspendBB->splitBasicBlock(Suspend);
auto Branch = cast<BranchInst>(SuspendBB->getTerminator());
// Create the unified return block.
if (!ReturnBB) {
// Place it before the first suspend.
ReturnBB = BasicBlock::Create(F.getContext(), "coro.return", &F,
NewSuspendBB);
Shape.RetconLowering.ReturnBlock = ReturnBB;
IRBuilder<> Builder(ReturnBB);
// Create PHIs for all the return values.
assert(ReturnPHIs.empty());
// First, the continuation.
ReturnPHIs.push_back(Builder.CreatePHI(Continuation->getType(),
Shape.CoroSuspends.size()));
// Next, all the directly-yielded values.
for (auto ResultTy : Shape.getRetconResultTypes())
ReturnPHIs.push_back(Builder.CreatePHI(ResultTy,
Shape.CoroSuspends.size()));
// Build the return value.
auto RetTy = F.getReturnType();
// Cast the continuation value if necessary.
// We can't rely on the types matching up because that type would
// have to be infinite.
auto CastedContinuationTy =
(ReturnPHIs.size() == 1 ? RetTy : RetTy->getStructElementType(0));
auto *CastedContinuation =
Builder.CreateBitCast(ReturnPHIs[0], CastedContinuationTy);
Value *RetV;
if (ReturnPHIs.size() == 1) {
RetV = CastedContinuation;
} else {
RetV = UndefValue::get(RetTy);
RetV = Builder.CreateInsertValue(RetV, CastedContinuation, 0);
for (size_t I = 1, E = ReturnPHIs.size(); I != E; ++I)
RetV = Builder.CreateInsertValue(RetV, ReturnPHIs[I], I);
}
Builder.CreateRet(RetV);
}
// Branch to the return block.
Branch->setSuccessor(0, ReturnBB);
ReturnPHIs[0]->addIncoming(Continuation, SuspendBB);
size_t NextPHIIndex = 1;
for (auto &VUse : Suspend->value_operands())
ReturnPHIs[NextPHIIndex++]->addIncoming(&*VUse, SuspendBB);
assert(NextPHIIndex == ReturnPHIs.size());
}
assert(Clones.size() == Shape.CoroSuspends.size());
for (size_t i = 0, e = Shape.CoroSuspends.size(); i != e; ++i) {
auto Suspend = Shape.CoroSuspends[i];
auto Clone = Clones[i];
CoroCloner(F, "resume." + Twine(i), Shape, Clone, Suspend).create();
}
}
namespace {
class PrettyStackTraceFunction : public PrettyStackTraceEntry {
Function &F;
public:
PrettyStackTraceFunction(Function &F) : F(F) {}
void print(raw_ostream &OS) const override {
OS << "While splitting coroutine ";
F.printAsOperand(OS, /*print type*/ false, F.getParent());
OS << "\n";
}
};
}
static coro::Shape splitCoroutine(Function &F,
SmallVectorImpl<Function *> &Clones) {
PrettyStackTraceFunction prettyStackTrace(F);
// The suspend-crossing algorithm in buildCoroutineFrame get tripped
// up by uses in unreachable blocks, so remove them as a first pass.
removeUnreachableBlocks(F);
coro::Shape Shape(F);
if (!Shape.CoroBegin)
return Shape;
simplifySuspendPoints(Shape);
buildCoroutineFrame(F, Shape);
replaceFrameSize(Shape);
// If there are no suspend points, no split required, just remove
// the allocation and deallocation blocks, they are not needed.
if (Shape.CoroSuspends.empty()) {
handleNoSuspendCoroutine(Shape);
} else {
switch (Shape.ABI) {
case coro::ABI::Switch:
splitSwitchCoroutine(F, Shape, Clones);
break;
case coro::ABI::Retcon:
case coro::ABI::RetconOnce:
splitRetconCoroutine(F, Shape, Clones);
break;
}
}
// Replace all the swifterror operations in the original function.
// This invalidates SwiftErrorOps in the Shape.
replaceSwiftErrorOps(F, Shape, nullptr);
return Shape;
}
static void
updateCallGraphAfterCoroutineSplit(Function &F, const coro::Shape &Shape,
const SmallVectorImpl<Function *> &Clones,
CallGraph &CG, CallGraphSCC &SCC) {
if (!Shape.CoroBegin)
return;
removeCoroEnds(Shape, &CG);
postSplitCleanup(F);
// Update call graph and add the functions we created to the SCC.
coro::updateCallGraph(F, Clones, CG, SCC);
}
static void updateCallGraphAfterCoroutineSplit(
LazyCallGraph::Node &N, const coro::Shape &Shape,
const SmallVectorImpl<Function *> &Clones, LazyCallGraph::SCC &C,
LazyCallGraph &CG, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
FunctionAnalysisManager &FAM) {
if (!Shape.CoroBegin)
return;
for (llvm::CoroEndInst *End : Shape.CoroEnds) {
auto &Context = End->getContext();
End->replaceAllUsesWith(ConstantInt::getFalse(Context));
End->eraseFromParent();
}
postSplitCleanup(N.getFunction());
// To insert the newly created coroutine funclets 'f.resume', 'f.destroy', and
// 'f.cleanup' into the same SCC as the coroutine 'f' they were outlined from,
// we make use of the CallGraphUpdater class, which can modify the internal
// state of the LazyCallGraph.
for (Function *Clone : Clones)
CG.addNewFunctionIntoRefSCC(*Clone, C.getOuterRefSCC());
// We've inserted instructions into coroutine 'f' that reference the three new
// coroutine funclets. We must now update the call graph so that reference
// edges between 'f' and its funclets are added to it. LazyCallGraph only
// allows CGSCC passes to insert "trivial" reference edges. We've ensured
// above, by inserting the funclets into the same SCC as the corutine, that
// the edges are trivial.
//
// N.B.: If we didn't update the call graph here, a CGSCCToFunctionPassAdaptor
// later in this CGSCC pass pipeline may be run, triggering a call graph
// update of its own. Function passes run by the adaptor are not permitted to
// add new edges of any kind to the graph, and the new edges inserted by this
// pass would be misattributed to that unrelated function pass.
updateCGAndAnalysisManagerForCGSCCPass(CG, C, N, AM, UR, FAM);
}
// When we see the coroutine the first time, we insert an indirect call to a
// devirt trigger function and mark the coroutine that it is now ready for
// split.
static void prepareForSplit(Function &F, CallGraph &CG) {
Module &M = *F.getParent();
LLVMContext &Context = F.getContext();
#ifndef NDEBUG
Function *DevirtFn = M.getFunction(CORO_DEVIRT_TRIGGER_FN);
assert(DevirtFn && "coro.devirt.trigger function not found");
#endif
F.addFnAttr(CORO_PRESPLIT_ATTR, PREPARED_FOR_SPLIT);
// Insert an indirect call sequence that will be devirtualized by CoroElide
// pass:
// %0 = call i8* @llvm.coro.subfn.addr(i8* null, i8 -1)
// %1 = bitcast i8* %0 to void(i8*)*
// call void %1(i8* null)
coro::LowererBase Lowerer(M);
Instruction *InsertPt = F.getEntryBlock().getTerminator();
auto *Null = ConstantPointerNull::get(Type::getInt8PtrTy(Context));
auto *DevirtFnAddr =
Lowerer.makeSubFnCall(Null, CoroSubFnInst::RestartTrigger, InsertPt);
FunctionType *FnTy = FunctionType::get(Type::getVoidTy(Context),
{Type::getInt8PtrTy(Context)}, false);
auto *IndirectCall = CallInst::Create(FnTy, DevirtFnAddr, Null, "", InsertPt);
// Update CG graph with an indirect call we just added.
CG[&F]->addCalledFunction(IndirectCall, CG.getCallsExternalNode());
}
// Make sure that there is a devirtualization trigger function that the
// coro-split pass uses to force a restart of the CGSCC pipeline. If the devirt
// trigger function is not found, we will create one and add it to the current
// SCC.
static void createDevirtTriggerFunc(CallGraph &CG, CallGraphSCC &SCC) {
Module &M = CG.getModule();
if (M.getFunction(CORO_DEVIRT_TRIGGER_FN))
return;
LLVMContext &C = M.getContext();
auto *FnTy = FunctionType::get(Type::getVoidTy(C), Type::getInt8PtrTy(C),
/*isVarArg=*/false);
Function *DevirtFn =
Function::Create(FnTy, GlobalValue::LinkageTypes::PrivateLinkage,
CORO_DEVIRT_TRIGGER_FN, &M);
DevirtFn->addFnAttr(Attribute::AlwaysInline);
auto *Entry = BasicBlock::Create(C, "entry", DevirtFn);
ReturnInst::Create(C, Entry);
auto *Node = CG.getOrInsertFunction(DevirtFn);
SmallVector<CallGraphNode *, 8> Nodes(SCC.begin(), SCC.end());
Nodes.push_back(Node);
SCC.initialize(Nodes);
}
/// Replace a call to llvm.coro.prepare.retcon.
static void replacePrepare(CallInst *Prepare, CallGraph &CG) {
auto CastFn = Prepare->getArgOperand(0); // as an i8*
auto Fn = CastFn->stripPointerCasts(); // as its original type
// Find call graph nodes for the preparation.
CallGraphNode *PrepareUserNode = nullptr, *FnNode = nullptr;
if (auto ConcreteFn = dyn_cast<Function>(Fn)) {
PrepareUserNode = CG[Prepare->getFunction()];
FnNode = CG[ConcreteFn];
}
// Attempt to peephole this pattern:
// %0 = bitcast [[TYPE]] @some_function to i8*
// %1 = call @llvm.coro.prepare.retcon(i8* %0)
// %2 = bitcast %1 to [[TYPE]]
// ==>
// %2 = @some_function
for (auto UI = Prepare->use_begin(), UE = Prepare->use_end();
UI != UE; ) {
// Look for bitcasts back to the original function type.
auto *Cast = dyn_cast<BitCastInst>((UI++)->getUser());
if (!Cast || Cast->getType() != Fn->getType()) continue;
// Check whether the replacement will introduce new direct calls.
// If so, we'll need to update the call graph.
if (PrepareUserNode) {
for (auto &Use : Cast->uses()) {
if (auto *CB = dyn_cast<CallBase>(Use.getUser())) {
if (!CB->isCallee(&Use))
continue;
PrepareUserNode->removeCallEdgeFor(*CB);
PrepareUserNode->addCalledFunction(CB, FnNode);
}
}
}
// Replace and remove the cast.
Cast->replaceAllUsesWith(Fn);
Cast->eraseFromParent();
}
// Replace any remaining uses with the function as an i8*.
// This can never directly be a callee, so we don't need to update CG.
Prepare->replaceAllUsesWith(CastFn);
Prepare->eraseFromParent();
// Kill dead bitcasts.
while (auto *Cast = dyn_cast<BitCastInst>(CastFn)) {
if (!Cast->use_empty()) break;
CastFn = Cast->getOperand(0);
Cast->eraseFromParent();
}
}
/// Remove calls to llvm.coro.prepare.retcon, a barrier meant to prevent
/// IPO from operating on calls to a retcon coroutine before it's been
/// split. This is only safe to do after we've split all retcon
/// coroutines in the module. We can do that this in this pass because
/// this pass does promise to split all retcon coroutines (as opposed to
/// switch coroutines, which are lowered in multiple stages).
static bool replaceAllPrepares(Function *PrepareFn, CallGraph &CG) {
bool Changed = false;
for (auto PI = PrepareFn->use_begin(), PE = PrepareFn->use_end();
PI != PE; ) {
// Intrinsics can only be used in calls.
auto *Prepare = cast<CallInst>((PI++)->getUser());
replacePrepare(Prepare, CG);
Changed = true;
}
return Changed;
}
static bool declaresCoroSplitIntrinsics(const Module &M) {
return coro::declaresIntrinsics(
M, {"llvm.coro.begin", "llvm.coro.prepare.retcon"});
}
PreservedAnalyses CoroSplitPass::run(LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
// NB: One invariant of a valid LazyCallGraph::SCC is that it must contain a
// non-zero number of nodes, so we assume that here and grab the first
// node's function's module.
Module &M = *C.begin()->getFunction().getParent();
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
if (!declaresCoroSplitIntrinsics(M))
return PreservedAnalyses::all();
// Check for uses of llvm.coro.prepare.retcon.
const auto *PrepareFn = M.getFunction("llvm.coro.prepare.retcon");
if (PrepareFn && PrepareFn->use_empty())
PrepareFn = nullptr;
// Find coroutines for processing.
SmallVector<LazyCallGraph::Node *, 4> Coroutines;
for (LazyCallGraph::Node &N : C)
if (N.getFunction().hasFnAttribute(CORO_PRESPLIT_ATTR))
Coroutines.push_back(&N);
if (Coroutines.empty() && !PrepareFn)
return PreservedAnalyses::all();
if (Coroutines.empty())
llvm_unreachable("new pass manager cannot yet handle "
"'llvm.coro.prepare.retcon'");
// Split all the coroutines.
for (LazyCallGraph::Node *N : Coroutines) {
Function &F = N->getFunction();
Attribute Attr = F.getFnAttribute(CORO_PRESPLIT_ATTR);
StringRef Value = Attr.getValueAsString();
LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F.getName()
<< "' state: " << Value << "\n");
if (Value == UNPREPARED_FOR_SPLIT) {
// Enqueue a second iteration of the CGSCC pipeline.
// N.B.:
// The CoroSplitLegacy pass "triggers" a restart of the CGSCC pass
// pipeline by inserting an indirect function call that the
// CoroElideLegacy pass then replaces with a direct function call. The
// legacy CGSCC pipeline's implicit behavior was as if wrapped in the new
// pass manager abstraction DevirtSCCRepeatedPass.
//
// This pass does not need to "trigger" another run of the pipeline.
// Instead, it simply enqueues the same RefSCC onto the pipeline's
// worklist.
UR.CWorklist.insert(&C);
F.addFnAttr(CORO_PRESPLIT_ATTR, PREPARED_FOR_SPLIT);
continue;
}
F.removeFnAttr(CORO_PRESPLIT_ATTR);
SmallVector<Function *, 4> Clones;
const coro::Shape Shape = splitCoroutine(F, Clones);
updateCallGraphAfterCoroutineSplit(*N, Shape, Clones, C, CG, AM, UR, FAM);
}
if (PrepareFn)
llvm_unreachable("new pass manager cannot yet handle "
"'llvm.coro.prepare.retcon'");
return PreservedAnalyses::none();
}
namespace {
// We present a coroutine to LLVM as an ordinary function with suspension
// points marked up with intrinsics. We let the optimizer party on the coroutine
// as a single function for as long as possible. Shortly before the coroutine is
// eligible to be inlined into its callers, we split up the coroutine into parts
// corresponding to initial, resume and destroy invocations of the coroutine,
// add them to the current SCC and restart the IPO pipeline to optimize the
// coroutine subfunctions we extracted before proceeding to the caller of the
// coroutine.
struct CoroSplitLegacy : public CallGraphSCCPass {
static char ID; // Pass identification, replacement for typeid
CoroSplitLegacy() : CallGraphSCCPass(ID) {
initializeCoroSplitLegacyPass(*PassRegistry::getPassRegistry());
}
bool Run = false;
// A coroutine is identified by the presence of coro.begin intrinsic, if
// we don't have any, this pass has nothing to do.
bool doInitialization(CallGraph &CG) override {
Run = declaresCoroSplitIntrinsics(CG.getModule());
return CallGraphSCCPass::doInitialization(CG);
}
bool runOnSCC(CallGraphSCC &SCC) override {
if (!Run)
return false;
// Check for uses of llvm.coro.prepare.retcon.
auto PrepareFn =
SCC.getCallGraph().getModule().getFunction("llvm.coro.prepare.retcon");
if (PrepareFn && PrepareFn->use_empty())
PrepareFn = nullptr;
// Find coroutines for processing.
SmallVector<Function *, 4> Coroutines;
for (CallGraphNode *CGN : SCC)
if (auto *F = CGN->getFunction())
if (F->hasFnAttribute(CORO_PRESPLIT_ATTR))
Coroutines.push_back(F);
if (Coroutines.empty() && !PrepareFn)
return false;
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
if (Coroutines.empty())
return replaceAllPrepares(PrepareFn, CG);
createDevirtTriggerFunc(CG, SCC);
// Split all the coroutines.
for (Function *F : Coroutines) {
Attribute Attr = F->getFnAttribute(CORO_PRESPLIT_ATTR);
StringRef Value = Attr.getValueAsString();
LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F->getName()
<< "' state: " << Value << "\n");
if (Value == UNPREPARED_FOR_SPLIT) {
prepareForSplit(*F, CG);
continue;
}
F->removeFnAttr(CORO_PRESPLIT_ATTR);
SmallVector<Function *, 4> Clones;
const coro::Shape Shape = splitCoroutine(*F, Clones);
updateCallGraphAfterCoroutineSplit(*F, Shape, Clones, CG, SCC);
}
if (PrepareFn)
replaceAllPrepares(PrepareFn, CG);
return true;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
CallGraphSCCPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return "Coroutine Splitting"; }
};
} // end anonymous namespace
char CoroSplitLegacy::ID = 0;
INITIALIZE_PASS_BEGIN(
CoroSplitLegacy, "coro-split",
"Split coroutine into a set of functions driving its state machine", false,
false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(
CoroSplitLegacy, "coro-split",
"Split coroutine into a set of functions driving its state machine", false,
false)
Pass *llvm::createCoroSplitLegacyPass() { return new CoroSplitLegacy(); }
|