1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
; RUN: opt -S -basic-aa -gvn < %s | FileCheck %s
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-n8:16:32"
target triple = "i386-apple-darwin11.0.0"
@sortlist = external global [5001 x i32], align 4
define void @Bubble() nounwind noinline {
; CHECK: entry:
; CHECK-NEXT: %tmp7.pre = load i32
entry:
br label %while.body5
; CHECK: while.body5:
; CHECK: %tmp7 = phi i32
; CHECK-NOT: %tmp7 = load i32
while.body5:
%indvar = phi i32 [ 0, %entry ], [ %tmp6, %if.end ]
%tmp5 = add i32 %indvar, 2
%arrayidx9 = getelementptr [5001 x i32], [5001 x i32]* @sortlist, i32 0, i32 %tmp5
%tmp6 = add i32 %indvar, 1
%arrayidx = getelementptr [5001 x i32], [5001 x i32]* @sortlist, i32 0, i32 %tmp6
%tmp7 = load i32, i32* %arrayidx, align 4
%tmp10 = load i32, i32* %arrayidx9, align 4
%cmp11 = icmp sgt i32 %tmp7, %tmp10
br i1 %cmp11, label %if.then, label %if.end
; CHECK: if.then:
if.then:
store i32 %tmp10, i32* %arrayidx, align 4
store i32 %tmp7, i32* %arrayidx9, align 4
br label %if.end
if.end:
%exitcond = icmp eq i32 %tmp6, 100
br i1 %exitcond, label %while.end.loopexit, label %while.body5
while.end.loopexit:
ret void
}
declare void @hold(i32) readonly
declare void @clobber()
; This is a classic LICM case
define i32 @test1(i1 %cnd, i32* %p) {
; CHECK-LABEL: @test1
entry:
; CHECK-LABEL: entry
; CHECK-NEXT: %v1.pre = load i32, i32* %p
br label %header
header:
; CHECK-LABEL: header
%v1 = load i32, i32* %p
call void @hold(i32 %v1)
br label %header
}
; Slightly more complicated case to highlight that MemoryDependenceAnalysis
; can compute availability for internal control flow. In this case, because
; the value is fully available across the backedge, we only need to establish
; anticipation for the preheader block (which is trivial in this case.)
define i32 @test2(i1 %cnd, i32* %p) {
; CHECK-LABEL: @test2
entry:
; CHECK-LABEL: entry
; CHECK-NEXT: %v1.pre = load i32, i32* %p
br label %header
header:
; CHECK-LABEL: header
%v1 = load i32, i32* %p
call void @hold(i32 %v1)
br i1 %cnd, label %bb1, label %bb2
bb1:
br label %merge
bb2:
br label %merge
merge:
br label %header
}
; TODO: at the moment, our anticipation check does not handle anything
; other than straight-line unconditional fallthrough. This particular
; case could be solved through either a backwards anticipation walk or
; use of the "safe to speculate" status (if we annotate the param)
define i32 @test3(i1 %cnd, i32* %p) {
entry:
; CHECK-LABEL: @test3
; CHECK-LABEL: entry
br label %header
header:
br i1 %cnd, label %bb1, label %bb2
bb1:
br label %merge
bb2:
br label %merge
merge:
; CHECK-LABEL: merge
; CHECK: load i32, i32* %p
%v1 = load i32, i32* %p
call void @hold(i32 %v1)
br label %header
}
; Highlight that we can PRE into a latch block when there are multiple
; latches only one of which clobbers an otherwise invariant value.
define i32 @test4(i1 %cnd, i32* %p) {
; CHECK-LABEL: @test4
entry:
; CHECK-LABEL: entry
%v1 = load i32, i32* %p
call void @hold(i32 %v1)
br label %header
header:
; CHECK-LABEL: header
%v2 = load i32, i32* %p
call void @hold(i32 %v2)
br i1 %cnd, label %bb1, label %bb2
bb1:
br label %header
bb2:
; CHECK-LABEL: bb2
; CHECK: call void @clobber()
; CHECK-NEXT: %v2.pre = load i32, i32* %p
; CHECK-NEXT: br label %header
call void @clobber()
br label %header
}
; Highlight the fact that we can PRE into a single clobbering latch block
; even in loop simplify form (though multiple applications of the same
; transformation).
define i32 @test5(i1 %cnd, i32* %p) {
; CHECK-LABEL: @test5
entry:
; CHECK-LABEL: entry
%v1 = load i32, i32* %p
call void @hold(i32 %v1)
br label %header
header:
; CHECK-LABEL: header
%v2 = load i32, i32* %p
call void @hold(i32 %v2)
br i1 %cnd, label %bb1, label %bb2
bb1:
br label %merge
bb2:
; CHECK-LABEL: bb2
; CHECK: call void @clobber()
; CHECK-NEXT: %v2.pre.pre = load i32, i32* %p
; CHECK-NEXT: br label %merge
call void @clobber()
br label %merge
merge:
br label %header
}
declare void @llvm.experimental.guard(i1 %cnd, ...)
; These two tests highlight speculation safety when we can not establish
; anticipation (since the original load might actually not execcute)
define i32 @test6a(i1 %cnd, i32* %p) {
entry:
; CHECK-LABEL: @test6a
br label %header
header:
; CHECK-LABEL: header
; CHECK: load i32, i32* %p
call void (i1, ...) @llvm.experimental.guard(i1 %cnd) ["deopt"()]
%v1 = load i32, i32* %p
call void @hold(i32 %v1)
br label %header
}
define i32 @test6b(i1 %cnd, i32* dereferenceable(8) align 4 %p) {
entry:
; CHECK-LABEL: @test6b
; CHECK: load i32, i32* %p
br label %header
header:
; CHECK-LABEL: header
call void (i1, ...) @llvm.experimental.guard(i1 %cnd) ["deopt"()]
%v1 = load i32, i32* %p
call void @hold(i32 %v1)
br label %header
}
|