1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
; RUN: opt < %s -licm -S | FileCheck %s
; RUN: opt < %s -aa-pipeline=basic-aa -passes='require<opt-remark-emit>,loop(licm)' -S | FileCheck %s
; RUN: opt < %s -licm -enable-mssa-loop-dependency=true -verify-memoryssa -S | FileCheck %s
@X = global i32 0 ; <i32*> [#uses=1]
declare void @foo()
declare i32 @llvm.bitreverse.i32(i32)
; This testcase tests for a problem where LICM hoists
; potentially trapping instructions when they are not guaranteed to execute.
define i32 @test1(i1 %c) {
; CHECK-LABEL: @test1(
%A = load i32, i32* @X ; <i32> [#uses=2]
br label %Loop
Loop: ; preds = %LoopTail, %0
call void @foo( )
br i1 %c, label %LoopTail, label %IfUnEqual
IfUnEqual: ; preds = %Loop
; CHECK: IfUnEqual:
; CHECK-NEXT: sdiv i32 4, %A
%B1 = sdiv i32 4, %A ; <i32> [#uses=1]
br label %LoopTail
LoopTail: ; preds = %IfUnEqual, %Loop
%B = phi i32 [ 0, %Loop ], [ %B1, %IfUnEqual ] ; <i32> [#uses=1]
br i1 %c, label %Loop, label %Out
Out: ; preds = %LoopTail
%C = sub i32 %A, %B ; <i32> [#uses=1]
ret i32 %C
}
declare void @foo2(i32) nounwind
;; It is ok and desirable to hoist this potentially trapping instruction.
define i32 @test2(i1 %c) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: load i32, i32* @X
; CHECK-NEXT: %B = sdiv i32 4, %A
%A = load i32, i32* @X
br label %Loop
Loop:
;; Should have hoisted this div!
%B = sdiv i32 4, %A
br label %loop2
loop2:
call void @foo2( i32 %B )
br i1 %c, label %Loop, label %Out
Out:
%C = sub i32 %A, %B
ret i32 %C
}
; This loop invariant instruction should be constant folded, not hoisted.
define i32 @test3(i1 %c) {
; CHECK-LABEL: define i32 @test3(
; CHECK: call void @foo2(i32 6)
%A = load i32, i32* @X ; <i32> [#uses=2]
br label %Loop
Loop:
%B = add i32 4, 2 ; <i32> [#uses=2]
call void @foo2( i32 %B )
br i1 %c, label %Loop, label %Out
Out: ; preds = %Loop
%C = sub i32 %A, %B ; <i32> [#uses=1]
ret i32 %C
}
; CHECK-LABEL: @test4(
; CHECK: call
; CHECK: sdiv
; CHECK: ret
define i32 @test4(i32 %x, i32 %y) nounwind uwtable ssp {
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.02 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%n.01 = phi i32 [ 0, %entry ], [ %add, %for.body ]
call void @foo_may_call_exit(i32 0)
%div = sdiv i32 %x, %y
%add = add nsw i32 %n.01, %div
%inc = add nsw i32 %i.02, 1
%cmp = icmp slt i32 %inc, 10000
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
%n.0.lcssa = phi i32 [ %add, %for.body ]
ret i32 %n.0.lcssa
}
declare void @foo_may_call_exit(i32)
; PR14854
; CHECK-LABEL: @test5(
; CHECK: extractvalue
; CHECK: br label %tailrecurse
; CHECK: tailrecurse:
; CHECK: ifend:
; CHECK: insertvalue
define { i32*, i32 } @test5(i32 %i, { i32*, i32 } %e) {
entry:
br label %tailrecurse
tailrecurse: ; preds = %then, %entry
%i.tr = phi i32 [ %i, %entry ], [ %cmp2, %then ]
%out = extractvalue { i32*, i32 } %e, 1
%d = insertvalue { i32*, i32 } %e, i32* null, 0
%cmp1 = icmp sgt i32 %out, %i.tr
br i1 %cmp1, label %then, label %ifend
then: ; preds = %tailrecurse
call void @foo()
%cmp2 = add i32 %i.tr, 1
br label %tailrecurse
ifend: ; preds = %tailrecurse
ret { i32*, i32 } %d
}
; CHECK: define void @test6(float %f)
; CHECK: fneg
; CHECK: br label %for.body
define void @test6(float %f) #2 {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
call void @foo_may_call_exit(i32 0)
%neg = fneg float %f
call void @use(float %neg)
%inc = add nsw i32 %i, 1
%cmp = icmp slt i32 %inc, 10000
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
declare void @use(float)
; CHECK: define i32 @hoist_bitreverse(i32 %0)
; CHECK: bitreverse
; CHECK: br label %header
define i32 @hoist_bitreverse(i32 %0) {
br label %header
header:
%sum = phi i32 [ 0, %1 ], [ %5, %latch ]
%2 = phi i32 [ 0, %1 ], [ %6, %latch ]
%3 = icmp slt i32 %2, 1024
br i1 %3, label %body, label %return
body:
%4 = call i32 @llvm.bitreverse.i32(i32 %0)
%5 = add i32 %sum, %4
br label %latch
latch:
%6 = add nsw i32 %2, 1
br label %header
return:
ret i32 %sum
}
; Can neither sink nor hoist
define i32 @test_volatile(i1 %c) {
; CHECK-LABEL: @test_volatile(
; CHECK-LABEL: Loop:
; CHECK: load volatile i32, i32* @X
; CHECK-LABEL: Out:
br label %Loop
Loop:
%A = load volatile i32, i32* @X
br i1 %c, label %Loop, label %Out
Out:
ret i32 %A
}
declare {}* @llvm.invariant.start.p0i8(i64, i8* nocapture) nounwind readonly
declare void @llvm.invariant.end.p0i8({}*, i64, i8* nocapture) nounwind
declare void @escaping.invariant.start({}*) nounwind
; invariant.start dominates the load, and in this scope, the
; load is invariant. So, we can hoist the `addrld` load out of the loop.
define i32 @test_fence(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; Same as test above, but the load is no longer invariant (presence of
; invariant.end). We cannot hoist the addrld out of loop.
define i32 @test_fence1(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence1
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NEXT: invariant.end
; CHECK-NEXT: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
call void @llvm.invariant.end.p0i8({}* %invst, i64 4, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; same as test above, but instead of invariant.end, we have the result of
; invariant.start escaping through a call. We cannot hoist the load.
define i32 @test_fence2(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence2
; CHECK-LABEL: entry
; CHECK-NOT: load
; CHECK: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
call void @escaping.invariant.start({}* %invst)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; FIXME: invariant.start dominates the load, and in this scope, the
; load is invariant. So, we can hoist the `addrld` load out of the loop.
; Consider the loadoperand addr.i bitcasted before being passed to
; invariant.start
define i32 @test_fence3(i32* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence3
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%addr.i = getelementptr inbounds i32, i32* %addr, i64 8
%gep = bitcast i32* %addr.i to i8 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; We should not hoist the addrld out of the loop.
define i32 @test_fence4(i32* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence4
; CHECK-LABEL: entry
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%addr.i = getelementptr inbounds i32, i32* %addr, i64 8
%gep = bitcast i32* %addr.i to i8 *
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
|