1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
// Adapted to be used with google benchmark
#include "benchmark/benchmark.h"
#include <algorithm>
#include <cmath>
#include "check.h"
#include "complexity.h"
namespace benchmark {
// Internal function to calculate the different scalability forms
BigOFunc* FittingCurve(BigO complexity) {
switch (complexity) {
case oN:
return [](int64_t n) -> double { return static_cast<double>(n); };
case oNSquared:
return [](int64_t n) -> double { return std::pow(n, 2); };
case oNCubed:
return [](int64_t n) -> double { return std::pow(n, 3); };
case oLogN:
return [](int64_t n) { return log2(n); };
case oNLogN:
return [](int64_t n) { return n * log2(n); };
case o1:
default:
return [](int64_t) { return 1.0; };
}
}
// Function to return an string for the calculated complexity
std::string GetBigOString(BigO complexity) {
switch (complexity) {
case oN:
return "N";
case oNSquared:
return "N^2";
case oNCubed:
return "N^3";
case oLogN:
return "lgN";
case oNLogN:
return "NlgN";
case o1:
return "(1)";
default:
return "f(N)";
}
}
// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error, for the fitting curve
// given by the lambda expression.
// - n : Vector containing the size of the benchmark tests.
// - time : Vector containing the times for the benchmark tests.
// - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };).
// For a deeper explanation on the algorithm logic, look the README file at
// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
const std::vector<double>& time,
BigOFunc* fitting_curve) {
double sigma_gn = 0.0;
double sigma_gn_squared = 0.0;
double sigma_time = 0.0;
double sigma_time_gn = 0.0;
// Calculate least square fitting parameter
for (size_t i = 0; i < n.size(); ++i) {
double gn_i = fitting_curve(n[i]);
sigma_gn += gn_i;
sigma_gn_squared += gn_i * gn_i;
sigma_time += time[i];
sigma_time_gn += time[i] * gn_i;
}
LeastSq result;
result.complexity = oLambda;
// Calculate complexity.
result.coef = sigma_time_gn / sigma_gn_squared;
// Calculate RMS
double rms = 0.0;
for (size_t i = 0; i < n.size(); ++i) {
double fit = result.coef * fitting_curve(n[i]);
rms += pow((time[i] - fit), 2);
}
// Normalized RMS by the mean of the observed values
double mean = sigma_time / n.size();
result.rms = sqrt(rms / n.size()) / mean;
return result;
}
// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error.
// - n : Vector containing the size of the benchmark tests.
// - time : Vector containing the times for the benchmark tests.
// - complexity : If different than oAuto, the fitting curve will stick to
// this one. If it is oAuto, it will be calculated the best
// fitting curve.
LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
const std::vector<double>& time, const BigO complexity) {
CHECK_EQ(n.size(), time.size());
CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two
// benchmark runs are given
CHECK_NE(complexity, oNone);
LeastSq best_fit;
if (complexity == oAuto) {
std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};
// Take o1 as default best fitting curve
best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
best_fit.complexity = o1;
// Compute all possible fitting curves and stick to the best one
for (const auto& fit : fit_curves) {
LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
if (current_fit.rms < best_fit.rms) {
best_fit = current_fit;
best_fit.complexity = fit;
}
}
} else {
best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
best_fit.complexity = complexity;
}
return best_fit;
}
std::vector<BenchmarkReporter::Run> ComputeBigO(
const std::vector<BenchmarkReporter::Run>& reports) {
typedef BenchmarkReporter::Run Run;
std::vector<Run> results;
if (reports.size() < 2) return results;
// Accumulators.
std::vector<int64_t> n;
std::vector<double> real_time;
std::vector<double> cpu_time;
// Populate the accumulators.
for (const Run& run : reports) {
CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?";
n.push_back(run.complexity_n);
real_time.push_back(run.real_accumulated_time / run.iterations);
cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
}
LeastSq result_cpu;
LeastSq result_real;
if (reports[0].complexity == oLambda) {
result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
} else {
result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
}
std::string benchmark_name =
reports[0].benchmark_name.substr(0, reports[0].benchmark_name.find('/'));
// Get the data from the accumulator to BenchmarkReporter::Run's.
Run big_o;
big_o.benchmark_name = benchmark_name + "_BigO";
big_o.iterations = 0;
big_o.real_accumulated_time = result_real.coef;
big_o.cpu_accumulated_time = result_cpu.coef;
big_o.report_big_o = true;
big_o.complexity = result_cpu.complexity;
// All the time results are reported after being multiplied by the
// time unit multiplier. But since RMS is a relative quantity it
// should not be multiplied at all. So, here, we _divide_ it by the
// multiplier so that when it is multiplied later the result is the
// correct one.
double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);
// Only add label to mean/stddev if it is same for all runs
Run rms;
big_o.report_label = reports[0].report_label;
rms.benchmark_name = benchmark_name + "_RMS";
rms.report_label = big_o.report_label;
rms.iterations = 0;
rms.real_accumulated_time = result_real.rms / multiplier;
rms.cpu_accumulated_time = result_cpu.rms / multiplier;
rms.report_rms = true;
rms.complexity = result_cpu.complexity;
// don't forget to keep the time unit, or we won't be able to
// recover the correct value.
rms.time_unit = reports[0].time_unit;
results.push_back(big_o);
results.push_back(rms);
return results;
}
} // end namespace benchmark
|