1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
//===- QuantizationUtilsTest.cpp - unit tests for quantization utils ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Quant/QuantOps.h"
#include "mlir/Dialect/Quant/QuantizeUtils.h"
#include "mlir/Dialect/Quant/UniformSupport.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/StandardTypes.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using namespace mlir;
using namespace mlir::quant;
// Load the quant dialect
static DialectRegistration<QuantizationDialect> QuantOpsRegistration;
namespace {
// Test UniformQuantizedValueConverter converts all APFloat to a magic number 5.
class TestUniformQuantizedValueConverter
: public UniformQuantizedValueConverter {
public:
TestUniformQuantizedValueConverter(UniformQuantizedType type)
: UniformQuantizedValueConverter(type), qtype(type) {}
APInt quantizeFloatToInt(APFloat expressedValue) const {
return APInt(qtype.getStorageType().cast<IntegerType>().getWidth(), 5L);
}
private:
UniformQuantizedType qtype;
};
Attribute getTestFloatAttr(double value, MLIRContext *ctx) {
return FloatAttr::get(FloatType::getF32(ctx), value);
}
template <typename ConcreteAttrClass, typename... Arg>
ConcreteAttrClass getTestElementsAttr(MLIRContext *ctx, ArrayRef<int64_t> shape,
Arg... value) {
auto eleType = FloatType::getF32(ctx);
ShapedType tensorType;
if (shape.size() == 1 && shape[0] == -1) {
tensorType = UnrankedTensorType::get(eleType);
} else {
tensorType = RankedTensorType::get(shape, eleType);
}
return ConcreteAttrClass::get(tensorType, value...);
}
ElementsAttr getTestSparseElementsAttr(MLIRContext *ctx,
ArrayRef<int64_t> shape) {
auto eleType = FloatType::getF32(ctx);
ShapedType tensorType;
if (shape.size() == 1 && shape[0] == -1) {
tensorType = UnrankedTensorType::get(eleType);
} else {
tensorType = RankedTensorType::get(shape, eleType);
}
auto indicesType = RankedTensorType::get({1, 2}, IntegerType::get(64, ctx));
auto indices =
DenseIntElementsAttr::get(indicesType, {APInt(64, 0), APInt(64, 0)});
auto valuesType = RankedTensorType::get({1}, eleType);
auto values = DenseFPElementsAttr::get(valuesType, {APFloat(0.0f)});
return SparseElementsAttr::get(tensorType, indices, values);
}
UniformQuantizedType getTestQuantizedType(Type storageType, MLIRContext *ctx) {
return UniformQuantizedType::get(/*flags=*/false, storageType,
FloatType::getF32(ctx), /*scale=*/1.0,
/*zeroPoint=*/0, /*storageTypeMin=*/0,
/*storageTypeMax=*/255);
}
TEST(QuantizationUtilsTest, convertFloatAttrUniform) {
MLIRContext ctx;
IntegerType convertedType = IntegerType::get(8, &ctx);
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
TestUniformQuantizedValueConverter converter(quantizedType);
auto realValue = getTestFloatAttr(1.0, &ctx);
Type typeResult;
auto valueResult =
quantizeAttrUniform(realValue, quantizedType, converter, typeResult);
EXPECT_EQ(valueResult.cast<IntegerAttr>().getInt(), 5);
EXPECT_EQ(
valueResult.cast<IntegerAttr>().getType().cast<IntegerType>().getWidth(),
convertedType.getWidth());
}
TEST(QuantizationUtilsTest, convertRankedDenseAttrUniform) {
MLIRContext ctx;
IntegerType convertedType = IntegerType::get(8, &ctx);
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
TestUniformQuantizedValueConverter converter(quantizedType);
auto realValue = getTestElementsAttr<DenseElementsAttr, ArrayRef<Attribute>>(
&ctx, {1, 2}, {getTestFloatAttr(1.0, &ctx), getTestFloatAttr(2.0, &ctx)});
Type returnedType;
auto returnedValue =
quantizeAttrUniform(realValue, quantizedType, converter, returnedType);
// Check Elements attribute shape and kind are not changed.
auto tensorType = returnedType.cast<TensorType>();
auto expectedTensorType = realValue.getType().cast<TensorType>();
EXPECT_EQ(tensorType.getShape(), expectedTensorType.getShape());
EXPECT_EQ(tensorType.getElementType(), convertedType);
EXPECT_TRUE(returnedValue.isa<DenseIntElementsAttr>());
// Check Elements attribute element value is expected.
auto firstValue = returnedValue.cast<ElementsAttr>().getValue({0, 0});
EXPECT_EQ(firstValue.cast<IntegerAttr>().getInt(), 5);
}
TEST(QuantizationUtilsTest, convertRankedSplatAttrUniform) {
MLIRContext ctx;
IntegerType convertedType = IntegerType::get(8, &ctx);
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
TestUniformQuantizedValueConverter converter(quantizedType);
auto realValue = getTestElementsAttr<DenseElementsAttr, Attribute>(
&ctx, {1, 2}, getTestFloatAttr(1.0, &ctx));
Type returnedType;
auto returnedValue =
quantizeAttrUniform(realValue, quantizedType, converter, returnedType);
// Check Elements attribute shape and kind are not changed.
auto tensorType = returnedType.cast<TensorType>();
auto expectedTensorType = realValue.getType().cast<TensorType>();
EXPECT_EQ(tensorType.getShape(), expectedTensorType.getShape());
EXPECT_EQ(tensorType.getElementType(), convertedType);
EXPECT_TRUE(returnedValue.isa<SplatElementsAttr>());
// Check Elements attribute element value is expected.
auto firstValue = returnedValue.cast<ElementsAttr>().getValue({0, 0});
EXPECT_EQ(firstValue.cast<IntegerAttr>().getInt(), 5);
}
TEST(QuantizationUtilsTest, convertRankedSparseAttrUniform) {
MLIRContext ctx;
IntegerType convertedType = IntegerType::get(8, &ctx);
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
TestUniformQuantizedValueConverter converter(quantizedType);
auto realValue = getTestSparseElementsAttr(&ctx, {1, 2});
Type returnedType;
auto returnedValue =
quantizeAttrUniform(realValue, quantizedType, converter, returnedType);
// Check Elements attribute shape and kind are not changed.
auto tensorType = returnedType.cast<TensorType>();
auto expectedTensorType = realValue.getType().cast<TensorType>();
EXPECT_EQ(tensorType.getShape(), expectedTensorType.getShape());
EXPECT_EQ(tensorType.getElementType(), convertedType);
EXPECT_EQ(returnedValue.getKind(), StandardAttributes::SparseElements);
// Check Elements attribute element value is expected.
auto firstValue = returnedValue.cast<ElementsAttr>().getValue({0, 0});
EXPECT_EQ(firstValue.cast<IntegerAttr>().getInt(), 5);
}
} // end namespace
|