1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
; RUN: opt %loadPolly -polly-codegen-ppcg -polly-acc-dump-code \
; RUN: -disable-output < %s | \
; RUN: FileCheck -check-prefix=CODE %s
; RUN: opt %loadPolly -polly-codegen-ppcg -polly-acc-dump-kernel-ir \
; RUN: -disable-output < %s | \
; RUN: FileCheck %s -check-prefix=KERNEL-IR
;
; REQUIRES: pollyacc
;
; #include <stdio.h>
;
; float foo(float A[]) {
; float sum = 0;
;
; for (long i = 0; i < 32; i++)
; A[i] = i;
;
; for (long i = 0; i < 32; i++)
; A[i] += i;
;
; for (long i = 0; i < 32; i++)
; sum += A[i];
;
; return sum;
; }
;
; int main() {
; float A[32];
; float sum = foo(A);
; printf("%f\n", sum);
; }
; CODE: dim3 k0_dimBlock(32);
; CODE-NEXT: dim3 k0_dimGrid(1);
; CODE-NEXT: kernel0 <<<k0_dimGrid, k0_dimBlock>>> (dev_MemRef_A);
; CODE-NEXT: cudaCheckKernel();
; CODE-NEXT: }
; CODE: {
; CODE-NEXT: dim3 k1_dimBlock;
; CODE-NEXT: dim3 k1_dimGrid;
; CODE-NEXT: kernel1 <<<k1_dimGrid, k1_dimBlock>>> (dev_MemRef_sum_0__phi);
; CODE-NEXT: cudaCheckKernel();
; CODE-NEXT: }
; CODE: {
; CODE-NEXT: dim3 k2_dimBlock;
; CODE-NEXT: dim3 k2_dimGrid;
; CODE-NEXT: kernel2 <<<k2_dimGrid, k2_dimBlock>>> (dev_MemRef_A, dev_MemRef_sum_0__phi, dev_MemRef_sum_0);
; CODE-NEXT: cudaCheckKernel();
; CODE-NEXT: }
; CODE: cudaCheckReturn(cudaMemcpy(MemRef_A, dev_MemRef_A, (32) * sizeof(float), cudaMemcpyDeviceToHost));
; CODE-NEXT: cudaCheckReturn(cudaMemcpy(&MemRef_sum_0, dev_MemRef_sum_0, sizeof(float), cudaMemcpyDeviceToHost));
; CODE-NEXT: cudaCheckReturn(cudaFree(dev_MemRef_A));
; CODE-NEXT: cudaCheckReturn(cudaFree(dev_MemRef_sum_0__phi));
; CODE-NEXT: cudaCheckReturn(cudaFree(dev_MemRef_sum_0));
; CODE-NEXT: }
; CODE: # kernel0
; CODE-NEXT: {
; CODE-NEXT: Stmt_bb4(t0);
; CODE-NEXT: Stmt_bb10(t0);
; CODE-NEXT: }
; CODE: # kernel1
; CODE-NEXT: Stmt_bb17();
; CODE: # kernel2
; CODE_NEXT: {
; CODE_NEXT: read();
; CODE_NEXT: for (int c0 = 0; c0 <= 32; c0 += 1) {
; CODE_NEXT: Stmt_bb18(c0);
; CODE_NEXT: if (c0 <= 31)
; CODE_NEXT: Stmt_bb20(c0);
; CODE_NEXT: }
; CODE_NEXT: write();
; CODE_NEXT: }
; KERNEL-IR: define ptx_kernel void @FUNC_foo_SCOP_0_KERNEL_1(i8 addrspace(1)* %MemRef_sum_0__phi)
; KERNEL-IR: store float 0.000000e+00, float* %sum.0.phiops
; KERNEL-IR: [[REGA:%.+]] = addrspacecast i8 addrspace(1)* %MemRef_sum_0__phi to float*
; KERNEL-IR: [[REGB:%.+]] = load float, float* %sum.0.phiops
; KERNEL-IR: store float [[REGB]], float* [[REGA]]
; KERNEL-IR: define ptx_kernel void @FUNC_foo_SCOP_0_KERNEL_2(i8 addrspace(1)* %MemRef_A, i8 addrspace(1)* %MemRef_sum_0__phi, i8 addrspace(1)* %MemRef_sum_0)
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
@.str = private unnamed_addr constant [4 x i8] c"%f\0A\00", align 1
define float @foo(float* %A) {
bb:
br label %bb3
bb3: ; preds = %bb6, %bb
%i.0 = phi i64 [ 0, %bb ], [ %tmp7, %bb6 ]
%exitcond2 = icmp ne i64 %i.0, 32
br i1 %exitcond2, label %bb4, label %bb8
bb4: ; preds = %bb3
%tmp = sitofp i64 %i.0 to float
%tmp5 = getelementptr inbounds float, float* %A, i64 %i.0
store float %tmp, float* %tmp5, align 4
br label %bb6
bb6: ; preds = %bb4
%tmp7 = add nuw nsw i64 %i.0, 1
br label %bb3
bb8: ; preds = %bb3
br label %bb9
bb9: ; preds = %bb15, %bb8
%i1.0 = phi i64 [ 0, %bb8 ], [ %tmp16, %bb15 ]
%exitcond1 = icmp ne i64 %i1.0, 32
br i1 %exitcond1, label %bb10, label %bb17
bb10: ; preds = %bb9
%tmp11 = sitofp i64 %i1.0 to float
%tmp12 = getelementptr inbounds float, float* %A, i64 %i1.0
%tmp13 = load float, float* %tmp12, align 4
%tmp14 = fadd float %tmp13, %tmp11
store float %tmp14, float* %tmp12, align 4
br label %bb15
bb15: ; preds = %bb10
%tmp16 = add nuw nsw i64 %i1.0, 1
br label %bb9
bb17: ; preds = %bb9
br label %bb18
bb18: ; preds = %bb20, %bb17
%sum.0 = phi float [ 0.000000e+00, %bb17 ], [ %tmp23, %bb20 ]
%i2.0 = phi i64 [ 0, %bb17 ], [ %tmp24, %bb20 ]
%exitcond = icmp ne i64 %i2.0, 32
br i1 %exitcond, label %bb19, label %bb25
bb19: ; preds = %bb18
br label %bb20
bb20: ; preds = %bb19
%tmp21 = getelementptr inbounds float, float* %A, i64 %i2.0
%tmp22 = load float, float* %tmp21, align 4
%tmp23 = fadd float %sum.0, %tmp22
%tmp24 = add nuw nsw i64 %i2.0, 1
br label %bb18
bb25: ; preds = %bb18
%sum.0.lcssa = phi float [ %sum.0, %bb18 ]
ret float %sum.0.lcssa
}
define i32 @main() {
bb:
%A = alloca [32 x float], align 16
%tmp = getelementptr inbounds [32 x float], [32 x float]* %A, i64 0, i64 0
%tmp1 = call float @foo(float* %tmp)
%tmp2 = fpext float %tmp1 to double
%tmp3 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @.str, i64 0, i64 0), double %tmp2) #2
ret i32 0
}
declare i32 @printf(i8*, ...) #1
|