| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 
 | //=== ConversionChecker.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Check that there is no loss of sign/precision in assignments, comparisons
// and multiplications.
//
// ConversionChecker uses path sensitive analysis to determine possible values
// of expressions. A warning is reported when:
// * a negative value is implicitly converted to an unsigned value in an
//   assignment, comparison or multiplication.
// * assignment / initialization when the source value is greater than the max
//   value of the target integer type
// * assignment / initialization when the source integer is above the range
//   where the target floating point type can represent all integers
//
// Many compilers and tools have similar checks that are based on semantic
// analysis. Those checks are sound but have poor precision. ConversionChecker
// is an alternative to those checks.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/AST/ParentMap.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "llvm/ADT/APFloat.h"
#include <climits>
using namespace clang;
using namespace ento;
namespace {
class ConversionChecker : public Checker<check::PreStmt<ImplicitCastExpr>> {
public:
  void checkPreStmt(const ImplicitCastExpr *Cast, CheckerContext &C) const;
private:
  mutable std::unique_ptr<BuiltinBug> BT;
  bool isLossOfPrecision(const ImplicitCastExpr *Cast, QualType DestType,
                         CheckerContext &C) const;
  bool isLossOfSign(const ImplicitCastExpr *Cast, CheckerContext &C) const;
  void reportBug(ExplodedNode *N, CheckerContext &C, const char Msg[]) const;
};
}
void ConversionChecker::checkPreStmt(const ImplicitCastExpr *Cast,
                                     CheckerContext &C) const {
  // TODO: For now we only warn about DeclRefExpr, to avoid noise. Warn for
  // calculations also.
  if (!isa<DeclRefExpr>(Cast->IgnoreParenImpCasts()))
    return;
  // Don't warn for loss of sign/precision in macros.
  if (Cast->getExprLoc().isMacroID())
    return;
  // Get Parent.
  const ParentMap &PM = C.getLocationContext()->getParentMap();
  const Stmt *Parent = PM.getParent(Cast);
  if (!Parent)
    return;
  bool LossOfSign = false;
  bool LossOfPrecision = false;
  // Loss of sign/precision in binary operation.
  if (const auto *B = dyn_cast<BinaryOperator>(Parent)) {
    BinaryOperator::Opcode Opc = B->getOpcode();
    if (Opc == BO_Assign) {
      LossOfSign = isLossOfSign(Cast, C);
      LossOfPrecision = isLossOfPrecision(Cast, Cast->getType(), C);
    } else if (Opc == BO_AddAssign || Opc == BO_SubAssign) {
      // No loss of sign.
      LossOfPrecision = isLossOfPrecision(Cast, B->getLHS()->getType(), C);
    } else if (Opc == BO_MulAssign) {
      LossOfSign = isLossOfSign(Cast, C);
      LossOfPrecision = isLossOfPrecision(Cast, B->getLHS()->getType(), C);
    } else if (Opc == BO_DivAssign || Opc == BO_RemAssign) {
      LossOfSign = isLossOfSign(Cast, C);
      // No loss of precision.
    } else if (Opc == BO_AndAssign) {
      LossOfSign = isLossOfSign(Cast, C);
      // No loss of precision.
    } else if (Opc == BO_OrAssign || Opc == BO_XorAssign) {
      LossOfSign = isLossOfSign(Cast, C);
      LossOfPrecision = isLossOfPrecision(Cast, B->getLHS()->getType(), C);
    } else if (B->isRelationalOp() || B->isMultiplicativeOp()) {
      LossOfSign = isLossOfSign(Cast, C);
    }
  } else if (isa<DeclStmt>(Parent)) {
    LossOfSign = isLossOfSign(Cast, C);
    LossOfPrecision = isLossOfPrecision(Cast, Cast->getType(), C);
  }
  if (LossOfSign || LossOfPrecision) {
    // Generate an error node.
    ExplodedNode *N = C.generateNonFatalErrorNode(C.getState());
    if (!N)
      return;
    if (LossOfSign)
      reportBug(N, C, "Loss of sign in implicit conversion");
    if (LossOfPrecision)
      reportBug(N, C, "Loss of precision in implicit conversion");
  }
}
void ConversionChecker::reportBug(ExplodedNode *N, CheckerContext &C,
                                  const char Msg[]) const {
  if (!BT)
    BT.reset(
        new BuiltinBug(this, "Conversion", "Possible loss of sign/precision."));
  // Generate a report for this bug.
  auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
  C.emitReport(std::move(R));
}
bool ConversionChecker::isLossOfPrecision(const ImplicitCastExpr *Cast,
                                          QualType DestType,
                                          CheckerContext &C) const {
  // Don't warn about explicit loss of precision.
  if (Cast->isEvaluatable(C.getASTContext()))
    return false;
  QualType SubType = Cast->IgnoreParenImpCasts()->getType();
  if (!DestType->isRealType() || !SubType->isIntegerType())
    return false;
  const bool isFloat = DestType->isFloatingType();
  const auto &AC = C.getASTContext();
  // We will find the largest RepresentsUntilExp value such that the DestType
  // can exactly represent all nonnegative integers below 2^RepresentsUntilExp.
  unsigned RepresentsUntilExp;
  if (isFloat) {
    const llvm::fltSemantics &Sema = AC.getFloatTypeSemantics(DestType);
    RepresentsUntilExp = llvm::APFloat::semanticsPrecision(Sema);
  } else {
    RepresentsUntilExp = AC.getIntWidth(DestType);
    if (RepresentsUntilExp == 1) {
      // This is just casting a number to bool, probably not a bug.
      return false;
    }
    if (DestType->isSignedIntegerType())
      RepresentsUntilExp--;
  }
  if (RepresentsUntilExp >= sizeof(unsigned long long) * CHAR_BIT) {
    // Avoid overflow in our later calculations.
    return false;
  }
  unsigned CorrectedSrcWidth = AC.getIntWidth(SubType);
  if (SubType->isSignedIntegerType())
    CorrectedSrcWidth--;
  if (RepresentsUntilExp >= CorrectedSrcWidth) {
    // Simple case: the destination can store all values of the source type.
    return false;
  }
  unsigned long long MaxVal = 1ULL << RepresentsUntilExp;
  if (isFloat) {
    // If this is a floating point type, it can also represent MaxVal exactly.
    MaxVal++;
  }
  return C.isGreaterOrEqual(Cast->getSubExpr(), MaxVal);
  // TODO: maybe also check negative values with too large magnitude.
}
bool ConversionChecker::isLossOfSign(const ImplicitCastExpr *Cast,
                                     CheckerContext &C) const {
  QualType CastType = Cast->getType();
  QualType SubType = Cast->IgnoreParenImpCasts()->getType();
  if (!CastType->isUnsignedIntegerType() || !SubType->isSignedIntegerType())
    return false;
  return C.isNegative(Cast->getSubExpr());
}
void ento::registerConversionChecker(CheckerManager &mgr) {
  mgr.registerChecker<ConversionChecker>();
}
bool ento::shouldRegisterConversionChecker(const CheckerManager &mgr) {
  return true;
}
 |