| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 
 | //===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains two checkers. One helps the static analyzer core to track
// types, the other does type inference on Obj-C generics and report type
// errors.
//
// Dynamic Type Propagation:
// This checker defines the rules for dynamic type gathering and propagation.
//
// Generics Checker for Objective-C:
// This checker tries to find type errors that the compiler is not able to catch
// due to the implicit conversions that were introduced for backward
// compatibility.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
using namespace clang;
using namespace ento;
// ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
// an auxiliary map that tracks more information about generic types, because in
// some cases the most derived type is not the most informative one about the
// type parameters. This types that are stored for each symbol in this map must
// be specialized.
// TODO: In some case the type stored in this map is exactly the same that is
// stored in DynamicTypeMap. We should no store duplicated information in those
// cases.
REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap, SymbolRef,
                               const ObjCObjectPointerType *)
namespace {
class DynamicTypePropagation:
    public Checker< check::PreCall,
                    check::PostCall,
                    check::DeadSymbols,
                    check::PostStmt<CastExpr>,
                    check::PostStmt<CXXNewExpr>,
                    check::PreObjCMessage,
                    check::PostObjCMessage > {
  const ObjCObjectType *getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
                                                    CheckerContext &C) const;
  /// Return a better dynamic type if one can be derived from the cast.
  const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
                                                 CheckerContext &C) const;
  ExplodedNode *dynamicTypePropagationOnCasts(const CastExpr *CE,
                                              ProgramStateRef &State,
                                              CheckerContext &C) const;
  mutable std::unique_ptr<BugType> ObjCGenericsBugType;
  void initBugType() const {
    if (!ObjCGenericsBugType)
      ObjCGenericsBugType.reset(new BugType(
          GenericCheckName, "Generics", categories::CoreFoundationObjectiveC));
  }
  class GenericsBugVisitor : public BugReporterVisitor {
  public:
    GenericsBugVisitor(SymbolRef S) : Sym(S) {}
    void Profile(llvm::FoldingSetNodeID &ID) const override {
      static int X = 0;
      ID.AddPointer(&X);
      ID.AddPointer(Sym);
    }
    PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
                                     BugReporterContext &BRC,
                                     PathSensitiveBugReport &BR) override;
  private:
    // The tracked symbol.
    SymbolRef Sym;
  };
  void reportGenericsBug(const ObjCObjectPointerType *From,
                         const ObjCObjectPointerType *To, ExplodedNode *N,
                         SymbolRef Sym, CheckerContext &C,
                         const Stmt *ReportedNode = nullptr) const;
public:
  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPostStmt(const CastExpr *CastE, CheckerContext &C) const;
  void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
  void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
  void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
  /// This value is set to true, when the Generics checker is turned on.
  DefaultBool CheckGenerics;
  CheckerNameRef GenericCheckName;
};
bool isObjCClassType(QualType Type) {
  if (const auto *PointerType = dyn_cast<ObjCObjectPointerType>(Type)) {
    return PointerType->getObjectType()->isObjCClass();
  }
  return false;
}
struct RuntimeType {
  const ObjCObjectType *Type = nullptr;
  bool Precise = false;
  operator bool() const { return Type != nullptr; }
};
RuntimeType inferReceiverType(const ObjCMethodCall &Message,
                              CheckerContext &C) {
  const ObjCMessageExpr *MessageExpr = Message.getOriginExpr();
  // Check if we can statically infer the actual type precisely.
  //
  // 1. Class is written directly in the message:
  // \code
  //   [ActualClass classMethod];
  // \endcode
  if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
    return {MessageExpr->getClassReceiver()->getAs<ObjCObjectType>(),
            /*Precise=*/true};
  }
  // 2. Receiver is 'super' from a class method (a.k.a 'super' is a
  //    class object).
  // \code
  //   [super classMethod];
  // \endcode
  if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperClass) {
    return {MessageExpr->getSuperType()->getAs<ObjCObjectType>(),
            /*Precise=*/true};
  }
  // 3. Receiver is 'super' from an instance method (a.k.a 'super' is an
  //    instance of a super class).
  // \code
  //   [super instanceMethod];
  // \encode
  if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
    if (const auto *ObjTy =
            MessageExpr->getSuperType()->getAs<ObjCObjectPointerType>())
      return {ObjTy->getObjectType(), /*Precise=*/true};
  }
  const Expr *RecE = MessageExpr->getInstanceReceiver();
  if (!RecE)
    return {};
  // Otherwise, let's try to get type information from our estimations of
  // runtime types.
  QualType InferredType;
  SVal ReceiverSVal = C.getSVal(RecE);
  ProgramStateRef State = C.getState();
  if (const MemRegion *ReceiverRegion = ReceiverSVal.getAsRegion()) {
    if (DynamicTypeInfo DTI = getDynamicTypeInfo(State, ReceiverRegion)) {
      InferredType = DTI.getType().getCanonicalType();
    }
  }
  if (SymbolRef ReceiverSymbol = ReceiverSVal.getAsSymbol()) {
    if (InferredType.isNull()) {
      InferredType = ReceiverSymbol->getType();
    }
    // If receiver is a Class object, we want to figure out the type it
    // represents.
    if (isObjCClassType(InferredType)) {
      // We actually might have some info on what type is contained in there.
      if (DynamicTypeInfo DTI =
              getClassObjectDynamicTypeInfo(State, ReceiverSymbol)) {
        // Types in Class objects can be ONLY Objective-C types
        return {cast<ObjCObjectType>(DTI.getType()), !DTI.canBeASubClass()};
      }
      SVal SelfSVal = State->getSelfSVal(C.getLocationContext());
      // Another way we can guess what is in Class object, is when it is a
      // 'self' variable of the current class method.
      if (ReceiverSVal == SelfSVal) {
        // In this case, we should return the type of the enclosing class
        // declaration.
        if (const ObjCMethodDecl *MD =
                dyn_cast<ObjCMethodDecl>(C.getStackFrame()->getDecl()))
          if (const ObjCObjectType *ObjTy = dyn_cast<ObjCObjectType>(
                  MD->getClassInterface()->getTypeForDecl()))
            return {ObjTy};
      }
    }
  }
  // Unfortunately, it seems like we have no idea what that type is.
  if (InferredType.isNull()) {
    return {};
  }
  // We can end up here if we got some dynamic type info and the
  // receiver is not one of the known Class objects.
  if (const auto *ReceiverInferredType =
          dyn_cast<ObjCObjectPointerType>(InferredType)) {
    return {ReceiverInferredType->getObjectType()};
  }
  // Any other type (like 'Class') is not really useful at this point.
  return {};
}
} // end anonymous namespace
void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
                                              CheckerContext &C) const {
  ProgramStateRef State = removeDeadTypes(C.getState(), SR);
  State = removeDeadClassObjectTypes(State, SR);
  MostSpecializedTypeArgsMapTy TyArgMap =
      State->get<MostSpecializedTypeArgsMap>();
  for (MostSpecializedTypeArgsMapTy::iterator I = TyArgMap.begin(),
                                              E = TyArgMap.end();
       I != E; ++I) {
    if (SR.isDead(I->first)) {
      State = State->remove<MostSpecializedTypeArgsMap>(I->first);
    }
  }
  C.addTransition(State);
}
static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
                            CheckerContext &C) {
  assert(Region);
  assert(MD);
  ASTContext &Ctx = C.getASTContext();
  QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));
  ProgramStateRef State = C.getState();
  State = setDynamicTypeInfo(State, Region, Ty, /*CanBeSubClassed=*/false);
  C.addTransition(State);
}
void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
                                          CheckerContext &C) const {
  if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
    // C++11 [class.cdtor]p4: When a virtual function is called directly or
    //   indirectly from a constructor or from a destructor, including during
    //   the construction or destruction of the class's non-static data members,
    //   and the object to which the call applies is the object under
    //   construction or destruction, the function called is the final overrider
    //   in the constructor's or destructor's class and not one overriding it in
    //   a more-derived class.
    switch (Ctor->getOriginExpr()->getConstructionKind()) {
    case CXXConstructExpr::CK_Complete:
    case CXXConstructExpr::CK_Delegating:
      // No additional type info necessary.
      return;
    case CXXConstructExpr::CK_NonVirtualBase:
    case CXXConstructExpr::CK_VirtualBase:
      if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
        recordFixedType(Target, Ctor->getDecl(), C);
      return;
    }
    return;
  }
  if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
    // C++11 [class.cdtor]p4 (see above)
    if (!Dtor->isBaseDestructor())
      return;
    const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
    if (!Target)
      return;
    const Decl *D = Dtor->getDecl();
    if (!D)
      return;
    recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
    return;
  }
}
void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
                                           CheckerContext &C) const {
  // We can obtain perfect type info for return values from some calls.
  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
    // Get the returned value if it's a region.
    const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
    if (!RetReg)
      return;
    ProgramStateRef State = C.getState();
    const ObjCMethodDecl *D = Msg->getDecl();
    if (D && D->hasRelatedResultType()) {
      switch (Msg->getMethodFamily()) {
      default:
        break;
      // We assume that the type of the object returned by alloc and new are the
      // pointer to the object of the class specified in the receiver of the
      // message.
      case OMF_alloc:
      case OMF_new: {
        // Get the type of object that will get created.
        RuntimeType ObjTy = inferReceiverType(*Msg, C);
        if (!ObjTy)
          return;
        QualType DynResTy =
            C.getASTContext().getObjCObjectPointerType(QualType(ObjTy.Type, 0));
        // We used to assume that whatever type we got from inferring the
        // type is actually precise (and it is not exactly correct).
        // A big portion of the existing behavior depends on that assumption
        // (e.g. certain inlining won't take place). For this reason, we don't
        // use ObjTy.Precise flag here.
        //
        // TODO: We should mitigate this problem some time in the future
        // and replace hardcoded 'false' with '!ObjTy.Precise'.
        C.addTransition(setDynamicTypeInfo(State, RetReg, DynResTy, false));
        break;
      }
      case OMF_init: {
        // Assume, the result of the init method has the same dynamic type as
        // the receiver and propagate the dynamic type info.
        const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
        if (!RecReg)
          return;
        DynamicTypeInfo RecDynType = getDynamicTypeInfo(State, RecReg);
        C.addTransition(setDynamicTypeInfo(State, RetReg, RecDynType));
        break;
      }
      }
    }
    return;
  }
  if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
    // We may need to undo the effects of our pre-call check.
    switch (Ctor->getOriginExpr()->getConstructionKind()) {
    case CXXConstructExpr::CK_Complete:
    case CXXConstructExpr::CK_Delegating:
      // No additional work necessary.
      // Note: This will leave behind the actual type of the object for
      // complete constructors, but arguably that's a good thing, since it
      // means the dynamic type info will be correct even for objects
      // constructed with operator new.
      return;
    case CXXConstructExpr::CK_NonVirtualBase:
    case CXXConstructExpr::CK_VirtualBase:
      if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
        // We just finished a base constructor. Now we can use the subclass's
        // type when resolving virtual calls.
        const LocationContext *LCtx = C.getLocationContext();
        // FIXME: In C++17 classes with non-virtual bases may be treated as
        // aggregates, and in such case no top-frame constructor will be called.
        // Figure out if we need to do anything in this case.
        // FIXME: Instead of relying on the ParentMap, we should have the
        // trigger-statement (InitListExpr in this case) available in this
        // callback, ideally as part of CallEvent.
        if (dyn_cast_or_null<InitListExpr>(
                LCtx->getParentMap().getParent(Ctor->getOriginExpr())))
          return;
        recordFixedType(Target, cast<CXXConstructorDecl>(LCtx->getDecl()), C);
      }
      return;
    }
  }
}
/// TODO: Handle explicit casts.
///       Handle C++ casts.
///
/// Precondition: the cast is between ObjCObjectPointers.
ExplodedNode *DynamicTypePropagation::dynamicTypePropagationOnCasts(
    const CastExpr *CE, ProgramStateRef &State, CheckerContext &C) const {
  // We only track type info for regions.
  const MemRegion *ToR = C.getSVal(CE).getAsRegion();
  if (!ToR)
    return C.getPredecessor();
  if (isa<ExplicitCastExpr>(CE))
    return C.getPredecessor();
  if (const Type *NewTy = getBetterObjCType(CE, C)) {
    State = setDynamicTypeInfo(State, ToR, QualType(NewTy, 0));
    return C.addTransition(State);
  }
  return C.getPredecessor();
}
void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
                                           CheckerContext &C) const {
  if (NewE->isArray())
    return;
  // We only track dynamic type info for regions.
  const MemRegion *MR = C.getSVal(NewE).getAsRegion();
  if (!MR)
    return;
  C.addTransition(setDynamicTypeInfo(C.getState(), MR, NewE->getType(),
                                     /*CanBeSubClassed=*/false));
}
// Return a better dynamic type if one can be derived from the cast.
// Compare the current dynamic type of the region and the new type to which we
// are casting. If the new type is lower in the inheritance hierarchy, pick it.
const ObjCObjectPointerType *
DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
                                          CheckerContext &C) const {
  const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
  assert(ToR);
  // Get the old and new types.
  const ObjCObjectPointerType *NewTy =
      CastE->getType()->getAs<ObjCObjectPointerType>();
  if (!NewTy)
    return nullptr;
  QualType OldDTy = getDynamicTypeInfo(C.getState(), ToR).getType();
  if (OldDTy.isNull()) {
    return NewTy;
  }
  const ObjCObjectPointerType *OldTy =
    OldDTy->getAs<ObjCObjectPointerType>();
  if (!OldTy)
    return nullptr;
  // Id the old type is 'id', the new one is more precise.
  if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
    return NewTy;
  // Return new if it's a subclass of old.
  const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
  const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
  if (ToI && FromI && FromI->isSuperClassOf(ToI))
    return NewTy;
  return nullptr;
}
static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
    const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
    const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
  // Checking if from and to are the same classes modulo specialization.
  if (From->getInterfaceDecl()->getCanonicalDecl() ==
      To->getInterfaceDecl()->getCanonicalDecl()) {
    if (To->isSpecialized()) {
      assert(MostInformativeCandidate->isSpecialized());
      return MostInformativeCandidate;
    }
    return From;
  }
  if (To->getObjectType()->getSuperClassType().isNull()) {
    // If To has no super class and From and To aren't the same then
    // To was not actually a descendent of From. In this case the best we can
    // do is 'From'.
    return From;
  }
  const auto *SuperOfTo =
      To->getObjectType()->getSuperClassType()->castAs<ObjCObjectType>();
  assert(SuperOfTo);
  QualType SuperPtrOfToQual =
      C.getObjCObjectPointerType(QualType(SuperOfTo, 0));
  const auto *SuperPtrOfTo = SuperPtrOfToQual->castAs<ObjCObjectPointerType>();
  if (To->isUnspecialized())
    return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
                                              C);
  else
    return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
                                              MostInformativeCandidate, C);
}
/// A downcast may loose specialization information. E. g.:
///   MutableMap<T, U> : Map
/// The downcast to MutableMap looses the information about the types of the
/// Map (due to the type parameters are not being forwarded to Map), and in
/// general there is no way to recover that information from the
/// declaration. In order to have to most information, lets find the most
/// derived type that has all the type parameters forwarded.
///
/// Get the a subclass of \p From (which has a lower bound \p To) that do not
/// loose information about type parameters. \p To has to be a subclass of
/// \p From. From has to be specialized.
static const ObjCObjectPointerType *
getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
                               const ObjCObjectPointerType *To, ASTContext &C) {
  return getMostInformativeDerivedClassImpl(From, To, To, C);
}
/// Inputs:
///   \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
///   bound might be the subclass of this type.
///   \param StaticUpperBound A static upper bound for a symbol.
///   \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
///   \param Current The type that was inferred for a symbol in a previous
///   context. Might be null when this is the first time that inference happens.
/// Precondition:
///   \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
///   is not null, it is specialized.
/// Possible cases:
///   (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
///   (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
///   (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
///   (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
/// Effect:
///   Use getMostInformativeDerivedClass with the upper and lower bound of the
///   set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
///   lower bound must be specialized. If the result differs from \p Current or
///   \p Current is null, store the result.
static bool
storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
                         const ObjCObjectPointerType *const *Current,
                         const ObjCObjectPointerType *StaticLowerBound,
                         const ObjCObjectPointerType *StaticUpperBound,
                         ASTContext &C) {
  // TODO: The above 4 cases are not exhaustive. In particular, it is possible
  // for Current to be incomparable with StaticLowerBound, StaticUpperBound,
  // or both.
  //
  // For example, suppose Foo<T> and Bar<T> are unrelated types.
  //
  //  Foo<T> *f = ...
  //  Bar<T> *b = ...
  //
  //  id t1 = b;
  //  f = t1;
  //  id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
  //
  // We should either constrain the callers of this function so that the stated
  // preconditions hold (and assert it) or rewrite the function to expicitly
  // handle the additional cases.
  // Precondition
  assert(StaticUpperBound->isSpecialized() ||
         StaticLowerBound->isSpecialized());
  assert(!Current || (*Current)->isSpecialized());
  // Case (1)
  if (!Current) {
    if (StaticUpperBound->isUnspecialized()) {
      State = State->set<MostSpecializedTypeArgsMap>(Sym, StaticLowerBound);
      return true;
    }
    // Upper bound is specialized.
    const ObjCObjectPointerType *WithMostInfo =
        getMostInformativeDerivedClass(StaticUpperBound, StaticLowerBound, C);
    State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
    return true;
  }
  // Case (3)
  if (C.canAssignObjCInterfaces(StaticLowerBound, *Current)) {
    return false;
  }
  // Case (4)
  if (C.canAssignObjCInterfaces(*Current, StaticUpperBound)) {
    // The type arguments might not be forwarded at any point of inheritance.
    const ObjCObjectPointerType *WithMostInfo =
        getMostInformativeDerivedClass(*Current, StaticUpperBound, C);
    WithMostInfo =
        getMostInformativeDerivedClass(WithMostInfo, StaticLowerBound, C);
    if (WithMostInfo == *Current)
      return false;
    State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
    return true;
  }
  // Case (2)
  const ObjCObjectPointerType *WithMostInfo =
      getMostInformativeDerivedClass(*Current, StaticLowerBound, C);
  if (WithMostInfo != *Current) {
    State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
    return true;
  }
  return false;
}
/// Type inference based on static type information that is available for the
/// cast and the tracked type information for the given symbol. When the tracked
/// symbol and the destination type of the cast are unrelated, report an error.
void DynamicTypePropagation::checkPostStmt(const CastExpr *CE,
                                           CheckerContext &C) const {
  if (CE->getCastKind() != CK_BitCast)
    return;
  QualType OriginType = CE->getSubExpr()->getType();
  QualType DestType = CE->getType();
  const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
  const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();
  if (!OrigObjectPtrType || !DestObjectPtrType)
    return;
  ProgramStateRef State = C.getState();
  ExplodedNode *AfterTypeProp = dynamicTypePropagationOnCasts(CE, State, C);
  ASTContext &ASTCtxt = C.getASTContext();
  // This checker detects the subtyping relationships using the assignment
  // rules. In order to be able to do this the kindofness must be stripped
  // first. The checker treats every type as kindof type anyways: when the
  // tracked type is the subtype of the static type it tries to look up the
  // methods in the tracked type first.
  OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
  DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
  if (OrigObjectPtrType->isUnspecialized() &&
      DestObjectPtrType->isUnspecialized())
    return;
  SymbolRef Sym = C.getSVal(CE).getAsSymbol();
  if (!Sym)
    return;
  const ObjCObjectPointerType *const *TrackedType =
      State->get<MostSpecializedTypeArgsMap>(Sym);
  if (isa<ExplicitCastExpr>(CE)) {
    // Treat explicit casts as an indication from the programmer that the
    // Objective-C type system is not rich enough to express the needed
    // invariant. In such cases, forget any existing information inferred
    // about the type arguments. We don't assume the casted-to specialized
    // type here because the invariant the programmer specifies in the cast
    // may only hold at this particular program point and not later ones.
    // We don't want a suppressing cast to require a cascade of casts down the
    // line.
    if (TrackedType) {
      State = State->remove<MostSpecializedTypeArgsMap>(Sym);
      C.addTransition(State, AfterTypeProp);
    }
    return;
  }
  // Check which assignments are legal.
  bool OrigToDest =
      ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
  bool DestToOrig =
      ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);
  // The tracked type should be the sub or super class of the static destination
  // type. When an (implicit) upcast or a downcast happens according to static
  // types, and there is no subtyping relationship between the tracked and the
  // static destination types, it indicates an error.
  if (TrackedType &&
      !ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
      !ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
    static CheckerProgramPointTag IllegalConv(this, "IllegalConversion");
    ExplodedNode *N = C.addTransition(State, AfterTypeProp, &IllegalConv);
    reportGenericsBug(*TrackedType, DestObjectPtrType, N, Sym, C);
    return;
  }
  // Handle downcasts and upcasts.
  const ObjCObjectPointerType *LowerBound = DestObjectPtrType;
  const ObjCObjectPointerType *UpperBound = OrigObjectPtrType;
  if (OrigToDest && !DestToOrig)
    std::swap(LowerBound, UpperBound);
  // The id type is not a real bound. Eliminate it.
  LowerBound = LowerBound->isObjCIdType() ? UpperBound : LowerBound;
  UpperBound = UpperBound->isObjCIdType() ? LowerBound : UpperBound;
  if (storeWhenMoreInformative(State, Sym, TrackedType, LowerBound, UpperBound,
                               ASTCtxt)) {
    C.addTransition(State, AfterTypeProp);
  }
}
static const Expr *stripCastsAndSugar(const Expr *E) {
  E = E->IgnoreParenImpCasts();
  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
    E = POE->getSyntacticForm()->IgnoreParenImpCasts();
  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
    E = OVE->getSourceExpr()->IgnoreParenImpCasts();
  return E;
}
static bool isObjCTypeParamDependent(QualType Type) {
  // It is illegal to typedef parameterized types inside an interface. Therefore
  // an Objective-C type can only be dependent on a type parameter when the type
  // parameter structurally present in the type itself.
  class IsObjCTypeParamDependentTypeVisitor
      : public RecursiveASTVisitor<IsObjCTypeParamDependentTypeVisitor> {
  public:
    IsObjCTypeParamDependentTypeVisitor() : Result(false) {}
    bool VisitObjCTypeParamType(const ObjCTypeParamType *Type) {
      if (isa<ObjCTypeParamDecl>(Type->getDecl())) {
        Result = true;
        return false;
      }
      return true;
    }
    bool Result;
  };
  IsObjCTypeParamDependentTypeVisitor Visitor;
  Visitor.TraverseType(Type);
  return Visitor.Result;
}
/// A method might not be available in the interface indicated by the static
/// type. However it might be available in the tracked type. In order to
/// properly substitute the type parameters we need the declaration context of
/// the method. The more specialized the enclosing class of the method is, the
/// more likely that the parameter substitution will be successful.
static const ObjCMethodDecl *
findMethodDecl(const ObjCMessageExpr *MessageExpr,
               const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
  const ObjCMethodDecl *Method = nullptr;
  QualType ReceiverType = MessageExpr->getReceiverType();
  const auto *ReceiverObjectPtrType =
      ReceiverType->getAs<ObjCObjectPointerType>();
  // Do this "devirtualization" on instance and class methods only. Trust the
  // static type on super and super class calls.
  if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
      MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
    // When the receiver type is id, Class, or some super class of the tracked
    // type, look up the method in the tracked type, not in the receiver type.
    // This way we preserve more information.
    if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
        ASTCtxt.canAssignObjCInterfaces(ReceiverObjectPtrType, TrackedType)) {
      const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
      // The method might not be found.
      Selector Sel = MessageExpr->getSelector();
      Method = InterfaceDecl->lookupInstanceMethod(Sel);
      if (!Method)
        Method = InterfaceDecl->lookupClassMethod(Sel);
    }
  }
  // Fallback to statick method lookup when the one based on the tracked type
  // failed.
  return Method ? Method : MessageExpr->getMethodDecl();
}
/// Get the returned ObjCObjectPointerType by a method based on the tracked type
/// information, or null pointer when the returned type is not an
/// ObjCObjectPointerType.
static QualType getReturnTypeForMethod(
    const ObjCMethodDecl *Method, ArrayRef<QualType> TypeArgs,
    const ObjCObjectPointerType *SelfType, ASTContext &C) {
  QualType StaticResultType = Method->getReturnType();
  // Is the return type declared as instance type?
  if (StaticResultType == C.getObjCInstanceType())
    return QualType(SelfType, 0);
  // Check whether the result type depends on a type parameter.
  if (!isObjCTypeParamDependent(StaticResultType))
    return QualType();
  QualType ResultType = StaticResultType.substObjCTypeArgs(
      C, TypeArgs, ObjCSubstitutionContext::Result);
  return ResultType;
}
/// When the receiver has a tracked type, use that type to validate the
/// argumments of the message expression and the return value.
void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall &M,
                                                 CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
  if (!Sym)
    return;
  const ObjCObjectPointerType *const *TrackedType =
      State->get<MostSpecializedTypeArgsMap>(Sym);
  if (!TrackedType)
    return;
  // Get the type arguments from tracked type and substitute type arguments
  // before do the semantic check.
  ASTContext &ASTCtxt = C.getASTContext();
  const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
  const ObjCMethodDecl *Method =
      findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
  // It is possible to call non-existent methods in Obj-C.
  if (!Method)
    return;
  // If the method is declared on a class that has a non-invariant
  // type parameter, don't warn about parameter mismatches after performing
  // substitution. This prevents warning when the programmer has purposely
  // casted the receiver to a super type or unspecialized type but the analyzer
  // has a more precise tracked type than the programmer intends at the call
  // site.
  //
  // For example, consider NSArray (which has a covariant type parameter)
  // and NSMutableArray (a subclass of NSArray where the type parameter is
  // invariant):
  // NSMutableArray *a = [[NSMutableArray<NSString *> alloc] init;
  //
  // [a containsObject:number]; // Safe: -containsObject is defined on NSArray.
  // NSArray<NSObject *> *other = [a arrayByAddingObject:number]  // Safe
  //
  // [a addObject:number] // Unsafe: -addObject: is defined on NSMutableArray
  //
  const ObjCInterfaceDecl *Interface = Method->getClassInterface();
  if (!Interface)
    return;
  ObjCTypeParamList *TypeParams = Interface->getTypeParamList();
  if (!TypeParams)
    return;
  for (ObjCTypeParamDecl *TypeParam : *TypeParams) {
    if (TypeParam->getVariance() != ObjCTypeParamVariance::Invariant)
      return;
  }
  Optional<ArrayRef<QualType>> TypeArgs =
      (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
  // This case might happen when there is an unspecialized override of a
  // specialized method.
  if (!TypeArgs)
    return;
  for (unsigned i = 0; i < Method->param_size(); i++) {
    const Expr *Arg = MessageExpr->getArg(i);
    const ParmVarDecl *Param = Method->parameters()[i];
    QualType OrigParamType = Param->getType();
    if (!isObjCTypeParamDependent(OrigParamType))
      continue;
    QualType ParamType = OrigParamType.substObjCTypeArgs(
        ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Parameter);
    // Check if it can be assigned
    const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
    const auto *ArgObjectPtrType =
        stripCastsAndSugar(Arg)->getType()->getAs<ObjCObjectPointerType>();
    if (!ParamObjectPtrType || !ArgObjectPtrType)
      continue;
    // Check if we have more concrete tracked type that is not a super type of
    // the static argument type.
    SVal ArgSVal = M.getArgSVal(i);
    SymbolRef ArgSym = ArgSVal.getAsSymbol();
    if (ArgSym) {
      const ObjCObjectPointerType *const *TrackedArgType =
          State->get<MostSpecializedTypeArgsMap>(ArgSym);
      if (TrackedArgType &&
          ASTCtxt.canAssignObjCInterfaces(ArgObjectPtrType, *TrackedArgType)) {
        ArgObjectPtrType = *TrackedArgType;
      }
    }
    // Warn when argument is incompatible with the parameter.
    if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
                                         ArgObjectPtrType)) {
      static CheckerProgramPointTag Tag(this, "ArgTypeMismatch");
      ExplodedNode *N = C.addTransition(State, &Tag);
      reportGenericsBug(ArgObjectPtrType, ParamObjectPtrType, N, Sym, C, Arg);
      return;
    }
  }
}
/// This callback is used to infer the types for Class variables. This info is
/// used later to validate messages that sent to classes. Class variables are
/// initialized with by invoking the 'class' method on a class.
/// This method is also used to infer the type information for the return
/// types.
// TODO: right now it only tracks generic types. Extend this to track every
// type in the DynamicTypeMap and diagnose type errors!
void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
                                                  CheckerContext &C) const {
  const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
  SymbolRef RetSym = M.getReturnValue().getAsSymbol();
  if (!RetSym)
    return;
  Selector Sel = MessageExpr->getSelector();
  ProgramStateRef State = C.getState();
  // Here we try to propagate information on Class objects.
  if (Sel.getAsString() == "class") {
    // We try to figure out the type from the receiver of the 'class' message.
    if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
      ReceiverRuntimeType.Type->getSuperClassType();
      QualType ReceiverClassType(ReceiverRuntimeType.Type, 0);
      // We want to consider only precise information on generics.
      if (ReceiverRuntimeType.Type->isSpecialized() &&
          ReceiverRuntimeType.Precise) {
        QualType ReceiverClassPointerType =
            C.getASTContext().getObjCObjectPointerType(ReceiverClassType);
        const auto *InferredType =
            ReceiverClassPointerType->castAs<ObjCObjectPointerType>();
        State = State->set<MostSpecializedTypeArgsMap>(RetSym, InferredType);
      }
      // Constrain the resulting class object to the inferred type.
      State = setClassObjectDynamicTypeInfo(State, RetSym, ReceiverClassType,
                                            !ReceiverRuntimeType.Precise);
      C.addTransition(State);
      return;
    }
  }
  if (Sel.getAsString() == "superclass") {
    // We try to figure out the type from the receiver of the 'superclass'
    // message.
    if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
      // Result type would be a super class of the receiver's type.
      QualType ReceiversSuperClass =
          ReceiverRuntimeType.Type->getSuperClassType();
      // Check if it really had super class.
      //
      // TODO: we can probably pay closer attention to cases when the class
      // object can be 'nil' as the result of such message.
      if (!ReceiversSuperClass.isNull()) {
        // Constrain the resulting class object to the inferred type.
        State = setClassObjectDynamicTypeInfo(
            State, RetSym, ReceiversSuperClass, !ReceiverRuntimeType.Precise);
        C.addTransition(State);
      }
      return;
    }
  }
  // Tracking for return types.
  SymbolRef RecSym = M.getReceiverSVal().getAsSymbol();
  if (!RecSym)
    return;
  const ObjCObjectPointerType *const *TrackedType =
      State->get<MostSpecializedTypeArgsMap>(RecSym);
  if (!TrackedType)
    return;
  ASTContext &ASTCtxt = C.getASTContext();
  const ObjCMethodDecl *Method =
      findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
  if (!Method)
    return;
  Optional<ArrayRef<QualType>> TypeArgs =
      (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
  if (!TypeArgs)
    return;
  QualType ResultType =
      getReturnTypeForMethod(Method, *TypeArgs, *TrackedType, ASTCtxt);
  // The static type is the same as the deduced type.
  if (ResultType.isNull())
    return;
  const MemRegion *RetRegion = M.getReturnValue().getAsRegion();
  ExplodedNode *Pred = C.getPredecessor();
  // When there is an entry available for the return symbol in DynamicTypeMap,
  // the call was inlined, and the information in the DynamicTypeMap is should
  // be precise.
  if (RetRegion && !getRawDynamicTypeInfo(State, RetRegion)) {
    // TODO: we have duplicated information in DynamicTypeMap and
    // MostSpecializedTypeArgsMap. We should only store anything in the later if
    // the stored data differs from the one stored in the former.
    State = setDynamicTypeInfo(State, RetRegion, ResultType,
                               /*CanBeSubClassed=*/true);
    Pred = C.addTransition(State);
  }
  const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();
  if (!ResultPtrType || ResultPtrType->isUnspecialized())
    return;
  // When the result is a specialized type and it is not tracked yet, track it
  // for the result symbol.
  if (!State->get<MostSpecializedTypeArgsMap>(RetSym)) {
    State = State->set<MostSpecializedTypeArgsMap>(RetSym, ResultPtrType);
    C.addTransition(State, Pred);
  }
}
void DynamicTypePropagation::reportGenericsBug(
    const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
    ExplodedNode *N, SymbolRef Sym, CheckerContext &C,
    const Stmt *ReportedNode) const {
  if (!CheckGenerics)
    return;
  initBugType();
  SmallString<192> Buf;
  llvm::raw_svector_ostream OS(Buf);
  OS << "Conversion from value of type '";
  QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
  OS << "' to incompatible type '";
  QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
  OS << "'";
  auto R = std::make_unique<PathSensitiveBugReport>(*ObjCGenericsBugType,
                                                    OS.str(), N);
  R->markInteresting(Sym);
  R->addVisitor(std::make_unique<GenericsBugVisitor>(Sym));
  if (ReportedNode)
    R->addRange(ReportedNode->getSourceRange());
  C.emitReport(std::move(R));
}
PathDiagnosticPieceRef DynamicTypePropagation::GenericsBugVisitor::VisitNode(
    const ExplodedNode *N, BugReporterContext &BRC,
    PathSensitiveBugReport &BR) {
  ProgramStateRef state = N->getState();
  ProgramStateRef statePrev = N->getFirstPred()->getState();
  const ObjCObjectPointerType *const *TrackedType =
      state->get<MostSpecializedTypeArgsMap>(Sym);
  const ObjCObjectPointerType *const *TrackedTypePrev =
      statePrev->get<MostSpecializedTypeArgsMap>(Sym);
  if (!TrackedType)
    return nullptr;
  if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
    return nullptr;
  // Retrieve the associated statement.
  const Stmt *S = N->getStmtForDiagnostics();
  if (!S)
    return nullptr;
  const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();
  SmallString<256> Buf;
  llvm::raw_svector_ostream OS(Buf);
  OS << "Type '";
  QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
  OS << "' is inferred from ";
  if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(S)) {
    OS << "explicit cast (from '";
    QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
                    Qualifiers(), OS, LangOpts, llvm::Twine());
    OS << "' to '";
    QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
                    LangOpts, llvm::Twine());
    OS << "')";
  } else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(S)) {
    OS << "implicit cast (from '";
    QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
                    Qualifiers(), OS, LangOpts, llvm::Twine());
    OS << "' to '";
    QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
                    LangOpts, llvm::Twine());
    OS << "')";
  } else {
    OS << "this context";
  }
  // Generate the extra diagnostic.
  PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
                             N->getLocationContext());
  return std::make_shared<PathDiagnosticEventPiece>(Pos, OS.str(), true);
}
/// Register checkers.
void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
  DynamicTypePropagation *checker = mgr.getChecker<DynamicTypePropagation>();
  checker->CheckGenerics = true;
  checker->GenericCheckName = mgr.getCurrentCheckerName();
}
bool ento::shouldRegisterObjCGenericsChecker(const CheckerManager &mgr) {
  return true;
}
void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
  mgr.registerChecker<DynamicTypePropagation>();
}
bool ento::shouldRegisterDynamicTypePropagation(const CheckerManager &mgr) {
  return true;
}
 |