| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 
 | //===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements bottom-up and top-down register pressure reduction list
// schedulers, using standard algorithms.  The basic approach uses a priority
// queue of available nodes to schedule.  One at a time, nodes are taken from
// the priority queue (thus in priority order), checked for legality to
// schedule, and emitted if legal.
//
//===----------------------------------------------------------------------===//
#include "ScheduleDAGSDNodes.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "pre-RA-sched"
STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
STATISTIC(NumUnfolds,    "Number of nodes unfolded");
STATISTIC(NumDups,       "Number of duplicated nodes");
STATISTIC(NumPRCopies,   "Number of physical register copies");
static RegisterScheduler
  burrListDAGScheduler("list-burr",
                       "Bottom-up register reduction list scheduling",
                       createBURRListDAGScheduler);
static RegisterScheduler
  sourceListDAGScheduler("source",
                         "Similar to list-burr but schedules in source "
                         "order when possible",
                         createSourceListDAGScheduler);
static RegisterScheduler
  hybridListDAGScheduler("list-hybrid",
                         "Bottom-up register pressure aware list scheduling "
                         "which tries to balance latency and register pressure",
                         createHybridListDAGScheduler);
static RegisterScheduler
  ILPListDAGScheduler("list-ilp",
                      "Bottom-up register pressure aware list scheduling "
                      "which tries to balance ILP and register pressure",
                      createILPListDAGScheduler);
static cl::opt<bool> DisableSchedCycles(
  "disable-sched-cycles", cl::Hidden, cl::init(false),
  cl::desc("Disable cycle-level precision during preRA scheduling"));
// Temporary sched=list-ilp flags until the heuristics are robust.
// Some options are also available under sched=list-hybrid.
static cl::opt<bool> DisableSchedRegPressure(
  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
  cl::desc("Disable regpressure priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedLiveUses(
  "disable-sched-live-uses", cl::Hidden, cl::init(true),
  cl::desc("Disable live use priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedVRegCycle(
  "disable-sched-vrcycle", cl::Hidden, cl::init(false),
  cl::desc("Disable virtual register cycle interference checks"));
static cl::opt<bool> DisableSchedPhysRegJoin(
  "disable-sched-physreg-join", cl::Hidden, cl::init(false),
  cl::desc("Disable physreg def-use affinity"));
static cl::opt<bool> DisableSchedStalls(
  "disable-sched-stalls", cl::Hidden, cl::init(true),
  cl::desc("Disable no-stall priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedCriticalPath(
  "disable-sched-critical-path", cl::Hidden, cl::init(false),
  cl::desc("Disable critical path priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedHeight(
  "disable-sched-height", cl::Hidden, cl::init(false),
  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
static cl::opt<bool> Disable2AddrHack(
  "disable-2addr-hack", cl::Hidden, cl::init(true),
  cl::desc("Disable scheduler's two-address hack"));
static cl::opt<int> MaxReorderWindow(
  "max-sched-reorder", cl::Hidden, cl::init(6),
  cl::desc("Number of instructions to allow ahead of the critical path "
           "in sched=list-ilp"));
static cl::opt<unsigned> AvgIPC(
  "sched-avg-ipc", cl::Hidden, cl::init(1),
  cl::desc("Average inst/cycle whan no target itinerary exists."));
namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGRRList - The actual register reduction list scheduler
/// implementation.  This supports both top-down and bottom-up scheduling.
///
class ScheduleDAGRRList : public ScheduleDAGSDNodes {
private:
  /// NeedLatency - True if the scheduler will make use of latency information.
  bool NeedLatency;
  /// AvailableQueue - The priority queue to use for the available SUnits.
  SchedulingPriorityQueue *AvailableQueue;
  /// PendingQueue - This contains all of the instructions whose operands have
  /// been issued, but their results are not ready yet (due to the latency of
  /// the operation).  Once the operands becomes available, the instruction is
  /// added to the AvailableQueue.
  std::vector<SUnit *> PendingQueue;
  /// HazardRec - The hazard recognizer to use.
  ScheduleHazardRecognizer *HazardRec;
  /// CurCycle - The current scheduler state corresponds to this cycle.
  unsigned CurCycle = 0;
  /// MinAvailableCycle - Cycle of the soonest available instruction.
  unsigned MinAvailableCycle;
  /// IssueCount - Count instructions issued in this cycle
  /// Currently valid only for bottom-up scheduling.
  unsigned IssueCount;
  /// LiveRegDefs - A set of physical registers and their definition
  /// that are "live". These nodes must be scheduled before any other nodes that
  /// modifies the registers can be scheduled.
  unsigned NumLiveRegs;
  std::unique_ptr<SUnit*[]> LiveRegDefs;
  std::unique_ptr<SUnit*[]> LiveRegGens;
  // Collect interferences between physical register use/defs.
  // Each interference is an SUnit and set of physical registers.
  SmallVector<SUnit*, 4> Interferences;
  using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>;
  LRegsMapT LRegsMap;
  /// Topo - A topological ordering for SUnits which permits fast IsReachable
  /// and similar queries.
  ScheduleDAGTopologicalSort Topo;
  // Hack to keep track of the inverse of FindCallSeqStart without more crazy
  // DAG crawling.
  DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
public:
  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
                    SchedulingPriorityQueue *availqueue,
                    CodeGenOpt::Level OptLevel)
    : ScheduleDAGSDNodes(mf),
      NeedLatency(needlatency), AvailableQueue(availqueue),
      Topo(SUnits, nullptr) {
    const TargetSubtargetInfo &STI = mf.getSubtarget();
    if (DisableSchedCycles || !NeedLatency)
      HazardRec = new ScheduleHazardRecognizer();
    else
      HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
  }
  ~ScheduleDAGRRList() override {
    delete HazardRec;
    delete AvailableQueue;
  }
  void Schedule() override;
  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
  /// IsReachable - Checks if SU is reachable from TargetSU.
  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
    return Topo.IsReachable(SU, TargetSU);
  }
  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
  /// create a cycle.
  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    return Topo.WillCreateCycle(SU, TargetSU);
  }
  /// AddPredQueued - Queues and update to add a predecessor edge to SUnit SU.
  /// This returns true if this is a new predecessor.
  /// Does *NOT* update the topological ordering! It just queues an update.
  void AddPredQueued(SUnit *SU, const SDep &D) {
    Topo.AddPredQueued(SU, D.getSUnit());
    SU->addPred(D);
  }
  /// AddPred - adds a predecessor edge to SUnit SU.
  /// This returns true if this is a new predecessor.
  /// Updates the topological ordering if required.
  void AddPred(SUnit *SU, const SDep &D) {
    Topo.AddPred(SU, D.getSUnit());
    SU->addPred(D);
  }
  /// RemovePred - removes a predecessor edge from SUnit SU.
  /// This returns true if an edge was removed.
  /// Updates the topological ordering if required.
  void RemovePred(SUnit *SU, const SDep &D) {
    Topo.RemovePred(SU, D.getSUnit());
    SU->removePred(D);
  }
private:
  bool isReady(SUnit *SU) {
    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
      AvailableQueue->isReady(SU);
  }
  void ReleasePred(SUnit *SU, const SDep *PredEdge);
  void ReleasePredecessors(SUnit *SU);
  void ReleasePending();
  void AdvanceToCycle(unsigned NextCycle);
  void AdvancePastStalls(SUnit *SU);
  void EmitNode(SUnit *SU);
  void ScheduleNodeBottomUp(SUnit*);
  void CapturePred(SDep *PredEdge);
  void UnscheduleNodeBottomUp(SUnit*);
  void RestoreHazardCheckerBottomUp();
  void BacktrackBottomUp(SUnit*, SUnit*);
  SUnit *TryUnfoldSU(SUnit *);
  SUnit *CopyAndMoveSuccessors(SUnit*);
  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
                                const TargetRegisterClass*,
                                const TargetRegisterClass*,
                                SmallVectorImpl<SUnit*>&);
  bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
  void releaseInterferences(unsigned Reg = 0);
  SUnit *PickNodeToScheduleBottomUp();
  void ListScheduleBottomUp();
  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
  SUnit *CreateNewSUnit(SDNode *N) {
    unsigned NumSUnits = SUnits.size();
    SUnit *NewNode = newSUnit(N);
    // Update the topological ordering.
    if (NewNode->NodeNum >= NumSUnits)
      Topo.AddSUnitWithoutPredecessors(NewNode);
    return NewNode;
  }
  /// CreateClone - Creates a new SUnit from an existing one.
  SUnit *CreateClone(SUnit *N) {
    unsigned NumSUnits = SUnits.size();
    SUnit *NewNode = Clone(N);
    // Update the topological ordering.
    if (NewNode->NodeNum >= NumSUnits)
      Topo.AddSUnitWithoutPredecessors(NewNode);
    return NewNode;
  }
  /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
  /// need actual latency information but the hybrid scheduler does.
  bool forceUnitLatencies() const override {
    return !NeedLatency;
  }
};
}  // end anonymous namespace
/// GetCostForDef - Looks up the register class and cost for a given definition.
/// Typically this just means looking up the representative register class,
/// but for untyped values (MVT::Untyped) it means inspecting the node's
/// opcode to determine what register class is being generated.
static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
                          const TargetLowering *TLI,
                          const TargetInstrInfo *TII,
                          const TargetRegisterInfo *TRI,
                          unsigned &RegClass, unsigned &Cost,
                          const MachineFunction &MF) {
  MVT VT = RegDefPos.GetValue();
  // Special handling for untyped values.  These values can only come from
  // the expansion of custom DAG-to-DAG patterns.
  if (VT == MVT::Untyped) {
    const SDNode *Node = RegDefPos.GetNode();
    // Special handling for CopyFromReg of untyped values.
    if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
      unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
      RegClass = RC->getID();
      Cost = 1;
      return;
    }
    unsigned Opcode = Node->getMachineOpcode();
    if (Opcode == TargetOpcode::REG_SEQUENCE) {
      unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
      const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
      RegClass = RC->getID();
      Cost = 1;
      return;
    }
    unsigned Idx = RegDefPos.GetIdx();
    const MCInstrDesc Desc = TII->get(Opcode);
    const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
    RegClass = RC->getID();
    // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
    // better way to determine it.
    Cost = 1;
  } else {
    RegClass = TLI->getRepRegClassFor(VT)->getID();
    Cost = TLI->getRepRegClassCostFor(VT);
  }
}
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGRRList::Schedule() {
  LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)
                    << " '" << BB->getName() << "' **********\n");
  CurCycle = 0;
  IssueCount = 0;
  MinAvailableCycle =
      DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max();
  NumLiveRegs = 0;
  // Allocate slots for each physical register, plus one for a special register
  // to track the virtual resource of a calling sequence.
  LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
  LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
  CallSeqEndForStart.clear();
  assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
  // Build the scheduling graph.
  BuildSchedGraph(nullptr);
  LLVM_DEBUG(dump());
  Topo.MarkDirty();
  AvailableQueue->initNodes(SUnits);
  HazardRec->Reset();
  // Execute the actual scheduling loop.
  ListScheduleBottomUp();
  AvailableQueue->releaseState();
  LLVM_DEBUG({
    dbgs() << "*** Final schedule ***\n";
    dumpSchedule();
    dbgs() << '\n';
  });
}
//===----------------------------------------------------------------------===//
//  Bottom-Up Scheduling
//===----------------------------------------------------------------------===//
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();
#ifndef NDEBUG
  if (PredSU->NumSuccsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    dumpNode(*PredSU);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(nullptr);
  }
#endif
  --PredSU->NumSuccsLeft;
  if (!forceUnitLatencies()) {
    // Updating predecessor's height. This is now the cycle when the
    // predecessor can be scheduled without causing a pipeline stall.
    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
  }
  // If all the node's successors are scheduled, this node is ready
  // to be scheduled. Ignore the special EntrySU node.
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    PredSU->isAvailable = true;
    unsigned Height = PredSU->getHeight();
    if (Height < MinAvailableCycle)
      MinAvailableCycle = Height;
    if (isReady(PredSU)) {
      AvailableQueue->push(PredSU);
    }
    // CapturePred and others may have left the node in the pending queue, avoid
    // adding it twice.
    else if (!PredSU->isPending) {
      PredSU->isPending = true;
      PendingQueue.push_back(PredSU);
    }
  }
}
/// IsChainDependent - Test if Outer is reachable from Inner through
/// chain dependencies.
static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
                             unsigned NestLevel,
                             const TargetInstrInfo *TII) {
  SDNode *N = Outer;
  while (true) {
    if (N == Inner)
      return true;
    // For a TokenFactor, examine each operand. There may be multiple ways
    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    // most nesting in order to ensure that we find the corresponding match.
    if (N->getOpcode() == ISD::TokenFactor) {
      for (const SDValue &Op : N->op_values())
        if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
          return true;
      return false;
    }
    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    if (N->isMachineOpcode()) {
      if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
        ++NestLevel;
      } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
        if (NestLevel == 0)
          return false;
        --NestLevel;
      }
    }
    // Otherwise, find the chain and continue climbing.
    for (const SDValue &Op : N->op_values())
      if (Op.getValueType() == MVT::Other) {
        N = Op.getNode();
        goto found_chain_operand;
      }
    return false;
  found_chain_operand:;
    if (N->getOpcode() == ISD::EntryToken)
      return false;
  }
}
/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
/// the corresponding (lowered) CALLSEQ_BEGIN node.
///
/// NestLevel and MaxNested are used in recursion to indcate the current level
/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
/// level seen so far.
///
/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
static SDNode *
FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
                 const TargetInstrInfo *TII) {
  while (true) {
    // For a TokenFactor, examine each operand. There may be multiple ways
    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    // most nesting in order to ensure that we find the corresponding match.
    if (N->getOpcode() == ISD::TokenFactor) {
      SDNode *Best = nullptr;
      unsigned BestMaxNest = MaxNest;
      for (const SDValue &Op : N->op_values()) {
        unsigned MyNestLevel = NestLevel;
        unsigned MyMaxNest = MaxNest;
        if (SDNode *New = FindCallSeqStart(Op.getNode(),
                                           MyNestLevel, MyMaxNest, TII))
          if (!Best || (MyMaxNest > BestMaxNest)) {
            Best = New;
            BestMaxNest = MyMaxNest;
          }
      }
      assert(Best);
      MaxNest = BestMaxNest;
      return Best;
    }
    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    if (N->isMachineOpcode()) {
      if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
        ++NestLevel;
        MaxNest = std::max(MaxNest, NestLevel);
      } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
        assert(NestLevel != 0);
        --NestLevel;
        if (NestLevel == 0)
          return N;
      }
    }
    // Otherwise, find the chain and continue climbing.
    for (const SDValue &Op : N->op_values())
      if (Op.getValueType() == MVT::Other) {
        N = Op.getNode();
        goto found_chain_operand;
      }
    return nullptr;
  found_chain_operand:;
    if (N->getOpcode() == ISD::EntryToken)
      return nullptr;
  }
}
/// Call ReleasePred for each predecessor, then update register live def/gen.
/// Always update LiveRegDefs for a register dependence even if the current SU
/// also defines the register. This effectively create one large live range
/// across a sequence of two-address node. This is important because the
/// entire chain must be scheduled together. Example:
///
/// flags = (3) add
/// flags = (2) addc flags
/// flags = (1) addc flags
///
/// results in
///
/// LiveRegDefs[flags] = 3
/// LiveRegGens[flags] = 1
///
/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
/// interference on flags.
void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
  // Bottom up: release predecessors
  for (SDep &Pred : SU->Preds) {
    ReleasePred(SU, &Pred);
    if (Pred.isAssignedRegDep()) {
      // This is a physical register dependency and it's impossible or
      // expensive to copy the register. Make sure nothing that can
      // clobber the register is scheduled between the predecessor and
      // this node.
      SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef;
      assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) &&
             "interference on register dependence");
      LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
      if (!LiveRegGens[Pred.getReg()]) {
        ++NumLiveRegs;
        LiveRegGens[Pred.getReg()] = SU;
      }
    }
  }
  // If we're scheduling a lowered CALLSEQ_END, find the corresponding
  // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
  // these nodes, to prevent other calls from being interscheduled with them.
  unsigned CallResource = TRI->getNumRegs();
  if (!LiveRegDefs[CallResource])
    for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
      if (Node->isMachineOpcode() &&
          Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
        unsigned NestLevel = 0;
        unsigned MaxNest = 0;
        SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
        assert(N && "Must find call sequence start");
        SUnit *Def = &SUnits[N->getNodeId()];
        CallSeqEndForStart[Def] = SU;
        ++NumLiveRegs;
        LiveRegDefs[CallResource] = Def;
        LiveRegGens[CallResource] = SU;
        break;
      }
}
/// Check to see if any of the pending instructions are ready to issue.  If
/// so, add them to the available queue.
void ScheduleDAGRRList::ReleasePending() {
  if (DisableSchedCycles) {
    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
    return;
  }
  // If the available queue is empty, it is safe to reset MinAvailableCycle.
  if (AvailableQueue->empty())
    MinAvailableCycle = std::numeric_limits<unsigned>::max();
  // Check to see if any of the pending instructions are ready to issue.  If
  // so, add them to the available queue.
  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    unsigned ReadyCycle = PendingQueue[i]->getHeight();
    if (ReadyCycle < MinAvailableCycle)
      MinAvailableCycle = ReadyCycle;
    if (PendingQueue[i]->isAvailable) {
      if (!isReady(PendingQueue[i]))
          continue;
      AvailableQueue->push(PendingQueue[i]);
    }
    PendingQueue[i]->isPending = false;
    PendingQueue[i] = PendingQueue.back();
    PendingQueue.pop_back();
    --i; --e;
  }
}
/// Move the scheduler state forward by the specified number of Cycles.
void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
  if (NextCycle <= CurCycle)
    return;
  IssueCount = 0;
  AvailableQueue->setCurCycle(NextCycle);
  if (!HazardRec->isEnabled()) {
    // Bypass lots of virtual calls in case of long latency.
    CurCycle = NextCycle;
  }
  else {
    for (; CurCycle != NextCycle; ++CurCycle) {
      HazardRec->RecedeCycle();
    }
  }
  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
  // available Q to release pending nodes at least once before popping.
  ReleasePending();
}
/// Move the scheduler state forward until the specified node's dependents are
/// ready and can be scheduled with no resource conflicts.
void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
  if (DisableSchedCycles)
    return;
  // FIXME: Nodes such as CopyFromReg probably should not advance the current
  // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
  // has predecessors the cycle will be advanced when they are scheduled.
  // But given the crude nature of modeling latency though such nodes, we
  // currently need to treat these nodes like real instructions.
  // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
  unsigned ReadyCycle = SU->getHeight();
  // Bump CurCycle to account for latency. We assume the latency of other
  // available instructions may be hidden by the stall (not a full pipe stall).
  // This updates the hazard recognizer's cycle before reserving resources for
  // this instruction.
  AdvanceToCycle(ReadyCycle);
  // Calls are scheduled in their preceding cycle, so don't conflict with
  // hazards from instructions after the call. EmitNode will reset the
  // scoreboard state before emitting the call.
  if (SU->isCall)
    return;
  // FIXME: For resource conflicts in very long non-pipelined stages, we
  // should probably skip ahead here to avoid useless scoreboard checks.
  int Stalls = 0;
  while (true) {
    ScheduleHazardRecognizer::HazardType HT =
      HazardRec->getHazardType(SU, -Stalls);
    if (HT == ScheduleHazardRecognizer::NoHazard)
      break;
    ++Stalls;
  }
  AdvanceToCycle(CurCycle + Stalls);
}
/// Record this SUnit in the HazardRecognizer.
/// Does not update CurCycle.
void ScheduleDAGRRList::EmitNode(SUnit *SU) {
  if (!HazardRec->isEnabled())
    return;
  // Check for phys reg copy.
  if (!SU->getNode())
    return;
  switch (SU->getNode()->getOpcode()) {
  default:
    assert(SU->getNode()->isMachineOpcode() &&
           "This target-independent node should not be scheduled.");
    break;
  case ISD::MERGE_VALUES:
  case ISD::TokenFactor:
  case ISD::LIFETIME_START:
  case ISD::LIFETIME_END:
  case ISD::CopyToReg:
  case ISD::CopyFromReg:
  case ISD::EH_LABEL:
    // Noops don't affect the scoreboard state. Copies are likely to be
    // removed.
    return;
  case ISD::INLINEASM:
  case ISD::INLINEASM_BR:
    // For inline asm, clear the pipeline state.
    HazardRec->Reset();
    return;
  }
  if (SU->isCall) {
    // Calls are scheduled with their preceding instructions. For bottom-up
    // scheduling, clear the pipeline state before emitting.
    HazardRec->Reset();
  }
  HazardRec->EmitInstruction(SU);
}
static void resetVRegCycle(SUnit *SU);
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
  LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
  LLVM_DEBUG(dumpNode(*SU));
#ifndef NDEBUG
  if (CurCycle < SU->getHeight())
    LLVM_DEBUG(dbgs() << "   Height [" << SU->getHeight()
                      << "] pipeline stall!\n");
#endif
  // FIXME: Do not modify node height. It may interfere with
  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
  // node its ready cycle can aid heuristics, and after scheduling it can
  // indicate the scheduled cycle.
  SU->setHeightToAtLeast(CurCycle);
  // Reserve resources for the scheduled instruction.
  EmitNode(SU);
  Sequence.push_back(SU);
  AvailableQueue->scheduledNode(SU);
  // If HazardRec is disabled, and each inst counts as one cycle, then
  // advance CurCycle before ReleasePredecessors to avoid useless pushes to
  // PendingQueue for schedulers that implement HasReadyFilter.
  if (!HazardRec->isEnabled() && AvgIPC < 2)
    AdvanceToCycle(CurCycle + 1);
  // Update liveness of predecessors before successors to avoid treating a
  // two-address node as a live range def.
  ReleasePredecessors(SU);
  // Release all the implicit physical register defs that are live.
  for (SDep &Succ : SU->Succs) {
    // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
    if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) {
      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
      --NumLiveRegs;
      LiveRegDefs[Succ.getReg()] = nullptr;
      LiveRegGens[Succ.getReg()] = nullptr;
      releaseInterferences(Succ.getReg());
    }
  }
  // Release the special call resource dependence, if this is the beginning
  // of a call.
  unsigned CallResource = TRI->getNumRegs();
  if (LiveRegDefs[CallResource] == SU)
    for (const SDNode *SUNode = SU->getNode(); SUNode;
         SUNode = SUNode->getGluedNode()) {
      if (SUNode->isMachineOpcode() &&
          SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
        --NumLiveRegs;
        LiveRegDefs[CallResource] = nullptr;
        LiveRegGens[CallResource] = nullptr;
        releaseInterferences(CallResource);
      }
    }
  resetVRegCycle(SU);
  SU->isScheduled = true;
  // Conditions under which the scheduler should eagerly advance the cycle:
  // (1) No available instructions
  // (2) All pipelines full, so available instructions must have hazards.
  //
  // If HazardRec is disabled, the cycle was pre-advanced before calling
  // ReleasePredecessors. In that case, IssueCount should remain 0.
  //
  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
  if (HazardRec->isEnabled() || AvgIPC > 1) {
    if (SU->getNode() && SU->getNode()->isMachineOpcode())
      ++IssueCount;
    if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
        || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
      AdvanceToCycle(CurCycle + 1);
  }
}
/// CapturePred - This does the opposite of ReleasePred. Since SU is being
/// unscheduled, increase the succ left count of its predecessors. Remove
/// them from AvailableQueue if necessary.
void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();
  if (PredSU->isAvailable) {
    PredSU->isAvailable = false;
    if (!PredSU->isPending)
      AvailableQueue->remove(PredSU);
  }
  assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
         "NumSuccsLeft will overflow!");
  ++PredSU->NumSuccsLeft;
}
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
/// its predecessor states to reflect the change.
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
  LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
  LLVM_DEBUG(dumpNode(*SU));
  for (SDep &Pred : SU->Preds) {
    CapturePred(&Pred);
    if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){
      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
      assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() &&
             "Physical register dependency violated?");
      --NumLiveRegs;
      LiveRegDefs[Pred.getReg()] = nullptr;
      LiveRegGens[Pred.getReg()] = nullptr;
      releaseInterferences(Pred.getReg());
    }
  }
  // Reclaim the special call resource dependence, if this is the beginning
  // of a call.
  unsigned CallResource = TRI->getNumRegs();
  for (const SDNode *SUNode = SU->getNode(); SUNode;
       SUNode = SUNode->getGluedNode()) {
    if (SUNode->isMachineOpcode() &&
        SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
      SUnit *SeqEnd = CallSeqEndForStart[SU];
      assert(SeqEnd && "Call sequence start/end must be known");
      assert(!LiveRegDefs[CallResource]);
      assert(!LiveRegGens[CallResource]);
      ++NumLiveRegs;
      LiveRegDefs[CallResource] = SU;
      LiveRegGens[CallResource] = SeqEnd;
    }
  }
  // Release the special call resource dependence, if this is the end
  // of a call.
  if (LiveRegGens[CallResource] == SU)
    for (const SDNode *SUNode = SU->getNode(); SUNode;
         SUNode = SUNode->getGluedNode()) {
      if (SUNode->isMachineOpcode() &&
          SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
        assert(LiveRegDefs[CallResource]);
        assert(LiveRegGens[CallResource]);
        --NumLiveRegs;
        LiveRegDefs[CallResource] = nullptr;
        LiveRegGens[CallResource] = nullptr;
        releaseInterferences(CallResource);
      }
    }
  for (auto &Succ : SU->Succs) {
    if (Succ.isAssignedRegDep()) {
      auto Reg = Succ.getReg();
      if (!LiveRegDefs[Reg])
        ++NumLiveRegs;
      // This becomes the nearest def. Note that an earlier def may still be
      // pending if this is a two-address node.
      LiveRegDefs[Reg] = SU;
      // Update LiveRegGen only if was empty before this unscheduling.
      // This is to avoid incorrect updating LiveRegGen set in previous run.
      if (!LiveRegGens[Reg]) {
        // Find the successor with the lowest height.
        LiveRegGens[Reg] = Succ.getSUnit();
        for (auto &Succ2 : SU->Succs) {
          if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
              Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
            LiveRegGens[Reg] = Succ2.getSUnit();
        }
      }
    }
  }
  if (SU->getHeight() < MinAvailableCycle)
    MinAvailableCycle = SU->getHeight();
  SU->setHeightDirty();
  SU->isScheduled = false;
  SU->isAvailable = true;
  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
    // Don't make available until backtracking is complete.
    SU->isPending = true;
    PendingQueue.push_back(SU);
  }
  else {
    AvailableQueue->push(SU);
  }
  AvailableQueue->unscheduledNode(SU);
}
/// After backtracking, the hazard checker needs to be restored to a state
/// corresponding the current cycle.
void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
  HazardRec->Reset();
  unsigned LookAhead = std::min((unsigned)Sequence.size(),
                                HazardRec->getMaxLookAhead());
  if (LookAhead == 0)
    return;
  std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead);
  unsigned HazardCycle = (*I)->getHeight();
  for (auto E = Sequence.end(); I != E; ++I) {
    SUnit *SU = *I;
    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
      HazardRec->RecedeCycle();
    }
    EmitNode(SU);
  }
}
/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
/// BTCycle in order to schedule a specific node.
void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
  SUnit *OldSU = Sequence.back();
  while (true) {
    Sequence.pop_back();
    // FIXME: use ready cycle instead of height
    CurCycle = OldSU->getHeight();
    UnscheduleNodeBottomUp(OldSU);
    AvailableQueue->setCurCycle(CurCycle);
    if (OldSU == BtSU)
      break;
    OldSU = Sequence.back();
  }
  assert(!SU->isSucc(OldSU) && "Something is wrong!");
  RestoreHazardCheckerBottomUp();
  ReleasePending();
  ++NumBacktracks;
}
static bool isOperandOf(const SUnit *SU, SDNode *N) {
  for (const SDNode *SUNode = SU->getNode(); SUNode;
       SUNode = SUNode->getGluedNode()) {
    if (SUNode->isOperandOf(N))
      return true;
  }
  return false;
}
/// TryUnfold - Attempt to unfold
SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) {
  SDNode *N = SU->getNode();
  // Use while over if to ease fall through.
  SmallVector<SDNode *, 2> NewNodes;
  if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
    return nullptr;
  // unfolding an x86 DEC64m operation results in store, dec, load which
  // can't be handled here so quit
  if (NewNodes.size() == 3)
    return nullptr;
  assert(NewNodes.size() == 2 && "Expected a load folding node!");
  N = NewNodes[1];
  SDNode *LoadNode = NewNodes[0];
  unsigned NumVals = N->getNumValues();
  unsigned OldNumVals = SU->getNode()->getNumValues();
  // LoadNode may already exist. This can happen when there is another
  // load from the same location and producing the same type of value
  // but it has different alignment or volatileness.
  bool isNewLoad = true;
  SUnit *LoadSU;
  if (LoadNode->getNodeId() != -1) {
    LoadSU = &SUnits[LoadNode->getNodeId()];
    // If LoadSU has already been scheduled, we should clone it but
    // this would negate the benefit to unfolding so just return SU.
    if (LoadSU->isScheduled)
      return SU;
    isNewLoad = false;
  } else {
    LoadSU = CreateNewSUnit(LoadNode);
    LoadNode->setNodeId(LoadSU->NodeNum);
    InitNumRegDefsLeft(LoadSU);
    computeLatency(LoadSU);
  }
  bool isNewN = true;
  SUnit *NewSU;
  // This can only happen when isNewLoad is false.
  if (N->getNodeId() != -1) {
    NewSU = &SUnits[N->getNodeId()];
    // If NewSU has already been scheduled, we need to clone it, but this
    // negates the benefit to unfolding so just return SU.
    if (NewSU->isScheduled) {
      return SU;
    }
    isNewN = false;
  } else {
    NewSU = CreateNewSUnit(N);
    N->setNodeId(NewSU->NodeNum);
    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
        NewSU->isTwoAddress = true;
        break;
      }
    }
    if (MCID.isCommutable())
      NewSU->isCommutable = true;
    InitNumRegDefsLeft(NewSU);
    computeLatency(NewSU);
  }
  LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
  // Now that we are committed to unfolding replace DAG Uses.
  for (unsigned i = 0; i != NumVals; ++i)
    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
  DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals - 1),
                                 SDValue(LoadNode, 1));
  // Record all the edges to and from the old SU, by category.
  SmallVector<SDep, 4> ChainPreds;
  SmallVector<SDep, 4> ChainSuccs;
  SmallVector<SDep, 4> LoadPreds;
  SmallVector<SDep, 4> NodePreds;
  SmallVector<SDep, 4> NodeSuccs;
  for (SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      ChainPreds.push_back(Pred);
    else if (isOperandOf(Pred.getSUnit(), LoadNode))
      LoadPreds.push_back(Pred);
    else
      NodePreds.push_back(Pred);
  }
  for (SDep &Succ : SU->Succs) {
    if (Succ.isCtrl())
      ChainSuccs.push_back(Succ);
    else
      NodeSuccs.push_back(Succ);
  }
  // Now assign edges to the newly-created nodes.
  for (const SDep &Pred : ChainPreds) {
    RemovePred(SU, Pred);
    if (isNewLoad)
      AddPredQueued(LoadSU, Pred);
  }
  for (const SDep &Pred : LoadPreds) {
    RemovePred(SU, Pred);
    if (isNewLoad)
      AddPredQueued(LoadSU, Pred);
  }
  for (const SDep &Pred : NodePreds) {
    RemovePred(SU, Pred);
    AddPredQueued(NewSU, Pred);
  }
  for (SDep D : NodeSuccs) {
    SUnit *SuccDep = D.getSUnit();
    D.setSUnit(SU);
    RemovePred(SuccDep, D);
    D.setSUnit(NewSU);
    AddPredQueued(SuccDep, D);
    // Balance register pressure.
    if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled &&
        !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
      --NewSU->NumRegDefsLeft;
  }
  for (SDep D : ChainSuccs) {
    SUnit *SuccDep = D.getSUnit();
    D.setSUnit(SU);
    RemovePred(SuccDep, D);
    if (isNewLoad) {
      D.setSUnit(LoadSU);
      AddPredQueued(SuccDep, D);
    }
  }
  // Add a data dependency to reflect that NewSU reads the value defined
  // by LoadSU.
  SDep D(LoadSU, SDep::Data, 0);
  D.setLatency(LoadSU->Latency);
  AddPredQueued(NewSU, D);
  if (isNewLoad)
    AvailableQueue->addNode(LoadSU);
  if (isNewN)
    AvailableQueue->addNode(NewSU);
  ++NumUnfolds;
  if (NewSU->NumSuccsLeft == 0)
    NewSU->isAvailable = true;
  return NewSU;
}
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
  SDNode *N = SU->getNode();
  if (!N)
    return nullptr;
  LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n");
  LLVM_DEBUG(dumpNode(*SU));
  if (N->getGluedNode() &&
      !TII->canCopyGluedNodeDuringSchedule(N)) {
    LLVM_DEBUG(
        dbgs()
        << "Giving up because it has incoming glue and the target does not "
           "want to copy it\n");
    return nullptr;
  }
  SUnit *NewSU;
  bool TryUnfold = false;
  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    MVT VT = N->getSimpleValueType(i);
    if (VT == MVT::Glue) {
      LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n");
      return nullptr;
    } else if (VT == MVT::Other)
      TryUnfold = true;
  }
  for (const SDValue &Op : N->op_values()) {
    MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
    if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) {
      LLVM_DEBUG(
          dbgs() << "Giving up because it one of the operands is glue and "
                    "the target does not want to copy it\n");
      return nullptr;
    }
  }
  // If possible unfold instruction.
  if (TryUnfold) {
    SUnit *UnfoldSU = TryUnfoldSU(SU);
    if (!UnfoldSU)
      return nullptr;
    SU = UnfoldSU;
    N = SU->getNode();
    // If this can be scheduled don't bother duplicating and just return
    if (SU->NumSuccsLeft == 0)
      return SU;
  }
  LLVM_DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
  NewSU = CreateClone(SU);
  // New SUnit has the exact same predecessors.
  for (SDep &Pred : SU->Preds)
    if (!Pred.isArtificial())
      AddPredQueued(NewSU, Pred);
  // Make sure the clone comes after the original. (InstrEmitter assumes
  // this ordering.)
  AddPredQueued(NewSU, SDep(SU, SDep::Artificial));
  // Only copy scheduled successors. Cut them from old node's successor
  // list and move them over.
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
  for (SDep &Succ : SU->Succs) {
    if (Succ.isArtificial())
      continue;
    SUnit *SuccSU = Succ.getSUnit();
    if (SuccSU->isScheduled) {
      SDep D = Succ;
      D.setSUnit(NewSU);
      AddPredQueued(SuccSU, D);
      D.setSUnit(SU);
      DelDeps.push_back(std::make_pair(SuccSU, D));
    }
  }
  for (auto &DelDep : DelDeps)
    RemovePred(DelDep.first, DelDep.second);
  AvailableQueue->updateNode(SU);
  AvailableQueue->addNode(NewSU);
  ++NumDups;
  return NewSU;
}
/// InsertCopiesAndMoveSuccs - Insert register copies and move all
/// scheduled successors of the given SUnit to the last copy.
void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
                                              const TargetRegisterClass *DestRC,
                                              const TargetRegisterClass *SrcRC,
                                              SmallVectorImpl<SUnit*> &Copies) {
  SUnit *CopyFromSU = CreateNewSUnit(nullptr);
  CopyFromSU->CopySrcRC = SrcRC;
  CopyFromSU->CopyDstRC = DestRC;
  SUnit *CopyToSU = CreateNewSUnit(nullptr);
  CopyToSU->CopySrcRC = DestRC;
  CopyToSU->CopyDstRC = SrcRC;
  // Only copy scheduled successors. Cut them from old node's successor
  // list and move them over.
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
  for (SDep &Succ : SU->Succs) {
    if (Succ.isArtificial())
      continue;
    SUnit *SuccSU = Succ.getSUnit();
    if (SuccSU->isScheduled) {
      SDep D = Succ;
      D.setSUnit(CopyToSU);
      AddPredQueued(SuccSU, D);
      DelDeps.push_back(std::make_pair(SuccSU, Succ));
    }
    else {
      // Avoid scheduling the def-side copy before other successors. Otherwise
      // we could introduce another physreg interference on the copy and
      // continue inserting copies indefinitely.
      AddPredQueued(SuccSU, SDep(CopyFromSU, SDep::Artificial));
    }
  }
  for (auto &DelDep : DelDeps)
    RemovePred(DelDep.first, DelDep.second);
  SDep FromDep(SU, SDep::Data, Reg);
  FromDep.setLatency(SU->Latency);
  AddPredQueued(CopyFromSU, FromDep);
  SDep ToDep(CopyFromSU, SDep::Data, 0);
  ToDep.setLatency(CopyFromSU->Latency);
  AddPredQueued(CopyToSU, ToDep);
  AvailableQueue->updateNode(SU);
  AvailableQueue->addNode(CopyFromSU);
  AvailableQueue->addNode(CopyToSU);
  Copies.push_back(CopyFromSU);
  Copies.push_back(CopyToSU);
  ++NumPRCopies;
}
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
                                 const TargetInstrInfo *TII) {
  unsigned NumRes;
  if (N->getOpcode() == ISD::CopyFromReg) {
    // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
    NumRes = 1;
  } else {
    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
    NumRes = MCID.getNumDefs();
    for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
      if (Reg == *ImpDef)
        break;
      ++NumRes;
    }
  }
  return N->getSimpleValueType(NumRes);
}
/// CheckForLiveRegDef - Return true and update live register vector if the
/// specified register def of the specified SUnit clobbers any "live" registers.
static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
                               SUnit **LiveRegDefs,
                               SmallSet<unsigned, 4> &RegAdded,
                               SmallVectorImpl<unsigned> &LRegs,
                               const TargetRegisterInfo *TRI) {
  for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
    // Check if Ref is live.
    if (!LiveRegDefs[*AliasI]) continue;
    // Allow multiple uses of the same def.
    if (LiveRegDefs[*AliasI] == SU) continue;
    // Add Reg to the set of interfering live regs.
    if (RegAdded.insert(*AliasI).second) {
      LRegs.push_back(*AliasI);
    }
  }
}
/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
/// by RegMask, and add them to LRegs.
static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
                                     ArrayRef<SUnit*> LiveRegDefs,
                                     SmallSet<unsigned, 4> &RegAdded,
                                     SmallVectorImpl<unsigned> &LRegs) {
  // Look at all live registers. Skip Reg0 and the special CallResource.
  for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
    if (!LiveRegDefs[i]) continue;
    if (LiveRegDefs[i] == SU) continue;
    if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
    if (RegAdded.insert(i).second)
      LRegs.push_back(i);
  }
}
/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
static const uint32_t *getNodeRegMask(const SDNode *N) {
  for (const SDValue &Op : N->op_values())
    if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
      return RegOp->getRegMask();
  return nullptr;
}
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGRRList::
DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
  if (NumLiveRegs == 0)
    return false;
  SmallSet<unsigned, 4> RegAdded;
  // If this node would clobber any "live" register, then it's not ready.
  //
  // If SU is the currently live definition of the same register that it uses,
  // then we are free to schedule it.
  for (SDep &Pred : SU->Preds) {
    if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU)
      CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs.get(),
                         RegAdded, LRegs, TRI);
  }
  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
    if (Node->getOpcode() == ISD::INLINEASM ||
        Node->getOpcode() == ISD::INLINEASM_BR) {
      // Inline asm can clobber physical defs.
      unsigned NumOps = Node->getNumOperands();
      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
        --NumOps;  // Ignore the glue operand.
      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
        unsigned Flags =
          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
        ++i; // Skip the ID value.
        if (InlineAsm::isRegDefKind(Flags) ||
            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
            InlineAsm::isClobberKind(Flags)) {
          // Check for def of register or earlyclobber register.
          for (; NumVals; --NumVals, ++i) {
            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
            if (Register::isPhysicalRegister(Reg))
              CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
          }
        } else
          i += NumVals;
      }
      continue;
    }
    if (!Node->isMachineOpcode())
      continue;
    // If we're in the middle of scheduling a call, don't begin scheduling
    // another call. Also, don't allow any physical registers to be live across
    // the call.
    if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
      // Check the special calling-sequence resource.
      unsigned CallResource = TRI->getNumRegs();
      if (LiveRegDefs[CallResource]) {
        SDNode *Gen = LiveRegGens[CallResource]->getNode();
        while (SDNode *Glued = Gen->getGluedNode())
          Gen = Glued;
        if (!IsChainDependent(Gen, Node, 0, TII) &&
            RegAdded.insert(CallResource).second)
          LRegs.push_back(CallResource);
      }
    }
    if (const uint32_t *RegMask = getNodeRegMask(Node))
      CheckForLiveRegDefMasked(SU, RegMask,
                               makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
                               RegAdded, LRegs);
    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
    if (MCID.hasOptionalDef()) {
      // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
      // This operand can be either a def of CPSR, if the S bit is set; or a use
      // of %noreg.  When the OptionalDef is set to a valid register, we need to
      // handle it in the same way as an ImplicitDef.
      for (unsigned i = 0; i < MCID.getNumDefs(); ++i)
        if (MCID.OpInfo[i].isOptionalDef()) {
          const SDValue &OptionalDef = Node->getOperand(i - Node->getNumValues());
          unsigned Reg = cast<RegisterSDNode>(OptionalDef)->getReg();
          CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
        }
    }
    if (!MCID.ImplicitDefs)
      continue;
    for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
      CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
  }
  return !LRegs.empty();
}
void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
  // Add the nodes that aren't ready back onto the available list.
  for (unsigned i = Interferences.size(); i > 0; --i) {
    SUnit *SU = Interferences[i-1];
    LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
    if (Reg) {
      SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
      if (!is_contained(LRegs, Reg))
        continue;
    }
    SU->isPending = false;
    // The interfering node may no longer be available due to backtracking.
    // Furthermore, it may have been made available again, in which case it is
    // now already in the AvailableQueue.
    if (SU->isAvailable && !SU->NodeQueueId) {
      LLVM_DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
      AvailableQueue->push(SU);
    }
    if (i < Interferences.size())
      Interferences[i-1] = Interferences.back();
    Interferences.pop_back();
    LRegsMap.erase(LRegsPos);
  }
}
/// Return a node that can be scheduled in this cycle. Requirements:
/// (1) Ready: latency has been satisfied
/// (2) No Hazards: resources are available
/// (3) No Interferences: may unschedule to break register interferences.
SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
  SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
  auto FindAvailableNode = [&]() {
    while (CurSU) {
      SmallVector<unsigned, 4> LRegs;
      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
        break;
      LLVM_DEBUG(dbgs() << "    Interfering reg ";
                 if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource";
                 else dbgs() << printReg(LRegs[0], TRI);
                 dbgs() << " SU #" << CurSU->NodeNum << '\n');
      std::pair<LRegsMapT::iterator, bool> LRegsPair =
        LRegsMap.insert(std::make_pair(CurSU, LRegs));
      if (LRegsPair.second) {
        CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
        Interferences.push_back(CurSU);
      }
      else {
        assert(CurSU->isPending && "Interferences are pending");
        // Update the interference with current live regs.
        LRegsPair.first->second = LRegs;
      }
      CurSU = AvailableQueue->pop();
    }
  };
  FindAvailableNode();
  if (CurSU)
    return CurSU;
  // We query the topological order in the loop body, so make sure outstanding
  // updates are applied before entering it (we only enter the loop if there
  // are some interferences). If we make changes to the ordering, we exit
  // the loop.
  // All candidates are delayed due to live physical reg dependencies.
  // Try backtracking, code duplication, or inserting cross class copies
  // to resolve it.
  for (SUnit *TrySU : Interferences) {
    SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
    // Try unscheduling up to the point where it's safe to schedule
    // this node.
    SUnit *BtSU = nullptr;
    unsigned LiveCycle = std::numeric_limits<unsigned>::max();
    for (unsigned Reg : LRegs) {
      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
        BtSU = LiveRegGens[Reg];
        LiveCycle = BtSU->getHeight();
      }
    }
    if (!WillCreateCycle(TrySU, BtSU))  {
      // BacktrackBottomUp mutates Interferences!
      BacktrackBottomUp(TrySU, BtSU);
      // Force the current node to be scheduled before the node that
      // requires the physical reg dep.
      if (BtSU->isAvailable) {
        BtSU->isAvailable = false;
        if (!BtSU->isPending)
          AvailableQueue->remove(BtSU);
      }
      LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum
                        << ") to SU(" << TrySU->NodeNum << ")\n");
      AddPredQueued(TrySU, SDep(BtSU, SDep::Artificial));
      // If one or more successors has been unscheduled, then the current
      // node is no longer available.
      if (!TrySU->isAvailable || !TrySU->NodeQueueId) {
        LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n");
        CurSU = AvailableQueue->pop();
      } else {
        LLVM_DEBUG(dbgs() << "TrySU available\n");
        // Available and in AvailableQueue
        AvailableQueue->remove(TrySU);
        CurSU = TrySU;
      }
      FindAvailableNode();
      // Interferences has been mutated. We must break.
      break;
    }
  }
  if (!CurSU) {
    // Can't backtrack. If it's too expensive to copy the value, then try
    // duplicate the nodes that produces these "too expensive to copy"
    // values to break the dependency. In case even that doesn't work,
    // insert cross class copies.
    // If it's not too expensive, i.e. cost != -1, issue copies.
    SUnit *TrySU = Interferences[0];
    SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
    assert(LRegs.size() == 1 && "Can't handle this yet!");
    unsigned Reg = LRegs[0];
    SUnit *LRDef = LiveRegDefs[Reg];
    MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
    const TargetRegisterClass *RC =
      TRI->getMinimalPhysRegClass(Reg, VT);
    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
    // If cross copy register class is the same as RC, then it must be possible
    // copy the value directly. Do not try duplicate the def.
    // If cross copy register class is not the same as RC, then it's possible to
    // copy the value but it require cross register class copies and it is
    // expensive.
    // If cross copy register class is null, then it's not possible to copy
    // the value at all.
    SUnit *NewDef = nullptr;
    if (DestRC != RC) {
      NewDef = CopyAndMoveSuccessors(LRDef);
      if (!DestRC && !NewDef)
        report_fatal_error("Can't handle live physical register dependency!");
    }
    if (!NewDef) {
      // Issue copies, these can be expensive cross register class copies.
      SmallVector<SUnit*, 2> Copies;
      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
      LLVM_DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
                        << " to SU #" << Copies.front()->NodeNum << "\n");
      AddPredQueued(TrySU, SDep(Copies.front(), SDep::Artificial));
      NewDef = Copies.back();
    }
    LLVM_DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
                      << " to SU #" << TrySU->NodeNum << "\n");
    LiveRegDefs[Reg] = NewDef;
    AddPredQueued(NewDef, SDep(TrySU, SDep::Artificial));
    TrySU->isAvailable = false;
    CurSU = NewDef;
  }
  assert(CurSU && "Unable to resolve live physical register dependencies!");
  return CurSU;
}
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGRRList::ListScheduleBottomUp() {
  // Release any predecessors of the special Exit node.
  ReleasePredecessors(&ExitSU);
  // Add root to Available queue.
  if (!SUnits.empty()) {
    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
    RootSU->isAvailable = true;
    AvailableQueue->push(RootSU);
  }
  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back.  Schedule the node.
  Sequence.reserve(SUnits.size());
  while (!AvailableQueue->empty() || !Interferences.empty()) {
    LLVM_DEBUG(dbgs() << "\nExamining Available:\n";
               AvailableQueue->dump(this));
    // Pick the best node to schedule taking all constraints into
    // consideration.
    SUnit *SU = PickNodeToScheduleBottomUp();
    AdvancePastStalls(SU);
    ScheduleNodeBottomUp(SU);
    while (AvailableQueue->empty() && !PendingQueue.empty()) {
      // Advance the cycle to free resources. Skip ahead to the next ready SU.
      assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() &&
             "MinAvailableCycle uninitialized");
      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
    }
  }
  // Reverse the order if it is bottom up.
  std::reverse(Sequence.begin(), Sequence.end());
#ifndef NDEBUG
  VerifyScheduledSequence(/*isBottomUp=*/true);
#endif
}
namespace {
class RegReductionPQBase;
struct queue_sort {
  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
};
#ifndef NDEBUG
template<class SF>
struct reverse_sort : public queue_sort {
  SF &SortFunc;
  reverse_sort(SF &sf) : SortFunc(sf) {}
  bool operator()(SUnit* left, SUnit* right) const {
    // reverse left/right rather than simply !SortFunc(left, right)
    // to expose different paths in the comparison logic.
    return SortFunc(right, left);
  }
};
#endif // NDEBUG
/// bu_ls_rr_sort - Priority function for bottom up register pressure
// reduction scheduler.
struct bu_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };
  RegReductionPQBase *SPQ;
  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
  bool operator()(SUnit* left, SUnit* right) const;
};
// src_ls_rr_sort - Priority function for source order scheduler.
struct src_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };
  RegReductionPQBase *SPQ;
  src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
  bool operator()(SUnit* left, SUnit* right) const;
};
// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
struct hybrid_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };
  RegReductionPQBase *SPQ;
  hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
  bool isReady(SUnit *SU, unsigned CurCycle) const;
  bool operator()(SUnit* left, SUnit* right) const;
};
// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
// scheduler.
struct ilp_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };
  RegReductionPQBase *SPQ;
  ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
  bool isReady(SUnit *SU, unsigned CurCycle) const;
  bool operator()(SUnit* left, SUnit* right) const;
};
class RegReductionPQBase : public SchedulingPriorityQueue {
protected:
  std::vector<SUnit *> Queue;
  unsigned CurQueueId = 0;
  bool TracksRegPressure;
  bool SrcOrder;
  // SUnits - The SUnits for the current graph.
  std::vector<SUnit> *SUnits;
  MachineFunction &MF;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  const TargetLowering *TLI;
  ScheduleDAGRRList *scheduleDAG = nullptr;
  // SethiUllmanNumbers - The SethiUllman number for each node.
  std::vector<unsigned> SethiUllmanNumbers;
  /// RegPressure - Tracking current reg pressure per register class.
  std::vector<unsigned> RegPressure;
  /// RegLimit - Tracking the number of allocatable registers per register
  /// class.
  std::vector<unsigned> RegLimit;
public:
  RegReductionPQBase(MachineFunction &mf,
                     bool hasReadyFilter,
                     bool tracksrp,
                     bool srcorder,
                     const TargetInstrInfo *tii,
                     const TargetRegisterInfo *tri,
                     const TargetLowering *tli)
    : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp),
      SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) {
    if (TracksRegPressure) {
      unsigned NumRC = TRI->getNumRegClasses();
      RegLimit.resize(NumRC);
      RegPressure.resize(NumRC);
      std::fill(RegLimit.begin(), RegLimit.end(), 0);
      std::fill(RegPressure.begin(), RegPressure.end(), 0);
      for (const TargetRegisterClass *RC : TRI->regclasses())
        RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF);
    }
  }
  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
    scheduleDAG = scheduleDag;
  }
  ScheduleHazardRecognizer* getHazardRec() {
    return scheduleDAG->getHazardRec();
  }
  void initNodes(std::vector<SUnit> &sunits) override;
  void addNode(const SUnit *SU) override;
  void updateNode(const SUnit *SU) override;
  void releaseState() override {
    SUnits = nullptr;
    SethiUllmanNumbers.clear();
    std::fill(RegPressure.begin(), RegPressure.end(), 0);
  }
  unsigned getNodePriority(const SUnit *SU) const;
  unsigned getNodeOrdering(const SUnit *SU) const {
    if (!SU->getNode()) return 0;
    return SU->getNode()->getIROrder();
  }
  bool empty() const override { return Queue.empty(); }
  void push(SUnit *U) override {
    assert(!U->NodeQueueId && "Node in the queue already");
    U->NodeQueueId = ++CurQueueId;
    Queue.push_back(U);
  }
  void remove(SUnit *SU) override {
    assert(!Queue.empty() && "Queue is empty!");
    assert(SU->NodeQueueId != 0 && "Not in queue!");
    std::vector<SUnit *>::iterator I = llvm::find(Queue, SU);
    if (I != std::prev(Queue.end()))
      std::swap(*I, Queue.back());
    Queue.pop_back();
    SU->NodeQueueId = 0;
  }
  bool tracksRegPressure() const override { return TracksRegPressure; }
  void dumpRegPressure() const;
  bool HighRegPressure(const SUnit *SU) const;
  bool MayReduceRegPressure(SUnit *SU) const;
  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
  void scheduledNode(SUnit *SU) override;
  void unscheduledNode(SUnit *SU) override;
protected:
  bool canClobber(const SUnit *SU, const SUnit *Op);
  void AddPseudoTwoAddrDeps();
  void PrescheduleNodesWithMultipleUses();
  void CalculateSethiUllmanNumbers();
};
template<class SF>
static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) {
  std::vector<SUnit *>::iterator Best = Q.begin();
  for (auto I = std::next(Q.begin()), E = Q.end(); I != E; ++I)
    if (Picker(*Best, *I))
      Best = I;
  SUnit *V = *Best;
  if (Best != std::prev(Q.end()))
    std::swap(*Best, Q.back());
  Q.pop_back();
  return V;
}
template<class SF>
SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) {
#ifndef NDEBUG
  if (DAG->StressSched) {
    reverse_sort<SF> RPicker(Picker);
    return popFromQueueImpl(Q, RPicker);
  }
#endif
  (void)DAG;
  return popFromQueueImpl(Q, Picker);
}
//===----------------------------------------------------------------------===//
//                RegReductionPriorityQueue Definition
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
// to reduce register pressure.
//
template<class SF>
class RegReductionPriorityQueue : public RegReductionPQBase {
  SF Picker;
public:
  RegReductionPriorityQueue(MachineFunction &mf,
                            bool tracksrp,
                            bool srcorder,
                            const TargetInstrInfo *tii,
                            const TargetRegisterInfo *tri,
                            const TargetLowering *tli)
    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
                         tii, tri, tli),
      Picker(this) {}
  bool isBottomUp() const override { return SF::IsBottomUp; }
  bool isReady(SUnit *U) const override {
    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
  }
  SUnit *pop() override {
    if (Queue.empty()) return nullptr;
    SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
    V->NodeQueueId = 0;
    return V;
  }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override {
    // Emulate pop() without clobbering NodeQueueIds.
    std::vector<SUnit *> DumpQueue = Queue;
    SF DumpPicker = Picker;
    while (!DumpQueue.empty()) {
      SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
      dbgs() << "Height " << SU->getHeight() << ": ";
      DAG->dumpNode(*SU);
    }
  }
#endif
};
using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>;
using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>;
using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>;
using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>;
} // end anonymous namespace
//===----------------------------------------------------------------------===//
//           Static Node Priority for Register Pressure Reduction
//===----------------------------------------------------------------------===//
// Check for special nodes that bypass scheduling heuristics.
// Currently this pushes TokenFactor nodes down, but may be used for other
// pseudo-ops as well.
//
// Return -1 to schedule right above left, 1 for left above right.
// Return 0 if no bias exists.
static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
  bool LSchedLow = left->isScheduleLow;
  bool RSchedLow = right->isScheduleLow;
  if (LSchedLow != RSchedLow)
    return LSchedLow < RSchedLow ? 1 : -1;
  return 0;
}
/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
/// Smaller number is the higher priority.
static unsigned
CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
  if (SUNumbers[SU->NodeNum] != 0)
    return SUNumbers[SU->NodeNum];
  // Use WorkList to avoid stack overflow on excessively large IRs.
  struct WorkState {
    WorkState(const SUnit *SU) : SU(SU) {}
    const SUnit *SU;
    unsigned PredsProcessed = 0;
  };
  SmallVector<WorkState, 16> WorkList;
  WorkList.push_back(SU);
  while (!WorkList.empty()) {
    auto &Temp = WorkList.back();
    auto *TempSU = Temp.SU;
    bool AllPredsKnown = true;
    // Try to find a non-evaluated pred and push it into the processing stack.
    for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) {
      auto &Pred = TempSU->Preds[P];
      if (Pred.isCtrl()) continue;  // ignore chain preds
      SUnit *PredSU = Pred.getSUnit();
      if (SUNumbers[PredSU->NodeNum] == 0) {
#ifndef NDEBUG
        // In debug mode, check that we don't have such element in the stack.
        for (auto It : WorkList)
          assert(It.SU != PredSU && "Trying to push an element twice?");
#endif
        // Next time start processing this one starting from the next pred.
        Temp.PredsProcessed = P + 1;
        WorkList.push_back(PredSU);
        AllPredsKnown = false;
        break;
      }
    }
    if (!AllPredsKnown)
      continue;
    // Once all preds are known, we can calculate the answer for this one.
    unsigned SethiUllmanNumber = 0;
    unsigned Extra = 0;
    for (const SDep &Pred : TempSU->Preds) {
      if (Pred.isCtrl()) continue;  // ignore chain preds
      SUnit *PredSU = Pred.getSUnit();
      unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum];
      assert(PredSethiUllman > 0 && "We should have evaluated this pred!");
      if (PredSethiUllman > SethiUllmanNumber) {
        SethiUllmanNumber = PredSethiUllman;
        Extra = 0;
      } else if (PredSethiUllman == SethiUllmanNumber)
        ++Extra;
    }
    SethiUllmanNumber += Extra;
    if (SethiUllmanNumber == 0)
      SethiUllmanNumber = 1;
    SUNumbers[TempSU->NodeNum] = SethiUllmanNumber;
    WorkList.pop_back();
  }
  assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!");
  return SUNumbers[SU->NodeNum];
}
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
/// scheduling units.
void RegReductionPQBase::CalculateSethiUllmanNumbers() {
  SethiUllmanNumbers.assign(SUnits->size(), 0);
  for (const SUnit &SU : *SUnits)
    CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
}
void RegReductionPQBase::addNode(const SUnit *SU) {
  unsigned SUSize = SethiUllmanNumbers.size();
  if (SUnits->size() > SUSize)
    SethiUllmanNumbers.resize(SUSize*2, 0);
  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}
void RegReductionPQBase::updateNode(const SUnit *SU) {
  SethiUllmanNumbers[SU->NodeNum] = 0;
  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}
// Lower priority means schedule further down. For bottom-up scheduling, lower
// priority SUs are scheduled before higher priority SUs.
unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
  assert(SU->NodeNum < SethiUllmanNumbers.size());
  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
    // CopyToReg should be close to its uses to facilitate coalescing and
    // avoid spilling.
    return 0;
  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
      Opc == TargetOpcode::SUBREG_TO_REG ||
      Opc == TargetOpcode::INSERT_SUBREG)
    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
    // close to their uses to facilitate coalescing.
    return 0;
  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
    // If SU does not have a register use, i.e. it doesn't produce a value
    // that would be consumed (e.g. store), then it terminates a chain of
    // computation.  Give it a large SethiUllman number so it will be
    // scheduled right before its predecessors that it doesn't lengthen
    // their live ranges.
    return 0xffff;
  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
    // If SU does not have a register def, schedule it close to its uses
    // because it does not lengthen any live ranges.
    return 0;
#if 1
  return SethiUllmanNumbers[SU->NodeNum];
#else
  unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
  if (SU->isCallOp) {
    // FIXME: This assumes all of the defs are used as call operands.
    int NP = (int)Priority - SU->getNode()->getNumValues();
    return (NP > 0) ? NP : 0;
  }
  return Priority;
#endif
}
//===----------------------------------------------------------------------===//
//                     Register Pressure Tracking
//===----------------------------------------------------------------------===//
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegReductionPQBase::dumpRegPressure() const {
  for (const TargetRegisterClass *RC : TRI->regclasses()) {
    unsigned Id = RC->getID();
    unsigned RP = RegPressure[Id];
    if (!RP) continue;
    LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
                      << RegLimit[Id] << '\n');
  }
}
#endif
bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
  if (!TLI)
    return false;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      continue;
    SUnit *PredSU = Pred.getSUnit();
    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
    // to cover the number of registers defined (they are all live).
    if (PredSU->NumRegDefsLeft == 0) {
      continue;
    }
    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
         RegDefPos.IsValid(); RegDefPos.Advance()) {
      unsigned RCId, Cost;
      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
        return true;
    }
  }
  return false;
}
bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
  const SDNode *N = SU->getNode();
  if (!N->isMachineOpcode() || !SU->NumSuccs)
    return false;
  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
  for (unsigned i = 0; i != NumDefs; ++i) {
    MVT VT = N->getSimpleValueType(i);
    if (!N->hasAnyUseOfValue(i))
      continue;
    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
    if (RegPressure[RCId] >= RegLimit[RCId])
      return true;
  }
  return false;
}
// Compute the register pressure contribution by this instruction by count up
// for uses that are not live and down for defs. Only count register classes
// that are already under high pressure. As a side effect, compute the number of
// uses of registers that are already live.
//
// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
// so could probably be factored.
int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
  LiveUses = 0;
  int PDiff = 0;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      continue;
    SUnit *PredSU = Pred.getSUnit();
    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
    // to cover the number of registers defined (they are all live).
    if (PredSU->NumRegDefsLeft == 0) {
      if (PredSU->getNode()->isMachineOpcode())
        ++LiveUses;
      continue;
    }
    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
         RegDefPos.IsValid(); RegDefPos.Advance()) {
      MVT VT = RegDefPos.GetValue();
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      if (RegPressure[RCId] >= RegLimit[RCId])
        ++PDiff;
    }
  }
  const SDNode *N = SU->getNode();
  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
    return PDiff;
  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
  for (unsigned i = 0; i != NumDefs; ++i) {
    MVT VT = N->getSimpleValueType(i);
    if (!N->hasAnyUseOfValue(i))
      continue;
    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
    if (RegPressure[RCId] >= RegLimit[RCId])
      --PDiff;
  }
  return PDiff;
}
void RegReductionPQBase::scheduledNode(SUnit *SU) {
  if (!TracksRegPressure)
    return;
  if (!SU->getNode())
    return;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      continue;
    SUnit *PredSU = Pred.getSUnit();
    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
    // to cover the number of registers defined (they are all live).
    if (PredSU->NumRegDefsLeft == 0) {
      continue;
    }
    // FIXME: The ScheduleDAG currently loses information about which of a
    // node's values is consumed by each dependence. Consequently, if the node
    // defines multiple register classes, we don't know which to pressurize
    // here. Instead the following loop consumes the register defs in an
    // arbitrary order. At least it handles the common case of clustered loads
    // to the same class. For precise liveness, each SDep needs to indicate the
    // result number. But that tightly couples the ScheduleDAG with the
    // SelectionDAG making updates tricky. A simpler hack would be to attach a
    // value type or register class to SDep.
    //
    // The most important aspect of register tracking is balancing the increase
    // here with the reduction further below. Note that this SU may use multiple
    // defs in PredSU. The can't be determined here, but we've already
    // compensated by reducing NumRegDefsLeft in PredSU during
    // ScheduleDAGSDNodes::AddSchedEdges.
    --PredSU->NumRegDefsLeft;
    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
      if (SkipRegDefs)
        continue;
      unsigned RCId, Cost;
      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
      RegPressure[RCId] += Cost;
      break;
    }
  }
  // We should have this assert, but there may be dead SDNodes that never
  // materialize as SUnits, so they don't appear to generate liveness.
  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
  int SkipRegDefs = (int)SU->NumRegDefsLeft;
  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
    if (SkipRegDefs > 0)
      continue;
    unsigned RCId, Cost;
    GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
    if (RegPressure[RCId] < Cost) {
      // Register pressure tracking is imprecise. This can happen. But we try
      // hard not to let it happen because it likely results in poor scheduling.
      LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum
                        << ") has too many regdefs\n");
      RegPressure[RCId] = 0;
    }
    else {
      RegPressure[RCId] -= Cost;
    }
  }
  LLVM_DEBUG(dumpRegPressure());
}
void RegReductionPQBase::unscheduledNode(SUnit *SU) {
  if (!TracksRegPressure)
    return;
  const SDNode *N = SU->getNode();
  if (!N) return;
  if (!N->isMachineOpcode()) {
    if (N->getOpcode() != ISD::CopyToReg)
      return;
  } else {
    unsigned Opc = N->getMachineOpcode();
    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
        Opc == TargetOpcode::INSERT_SUBREG ||
        Opc == TargetOpcode::SUBREG_TO_REG ||
        Opc == TargetOpcode::REG_SEQUENCE ||
        Opc == TargetOpcode::IMPLICIT_DEF)
      return;
  }
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      continue;
    SUnit *PredSU = Pred.getSUnit();
    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
    // counts data deps.
    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
      continue;
    const SDNode *PN = PredSU->getNode();
    if (!PN->isMachineOpcode()) {
      if (PN->getOpcode() == ISD::CopyFromReg) {
        MVT VT = PN->getSimpleValueType(0);
        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
      }
      continue;
    }
    unsigned POpc = PN->getMachineOpcode();
    if (POpc == TargetOpcode::IMPLICIT_DEF)
      continue;
    if (POpc == TargetOpcode::EXTRACT_SUBREG ||
        POpc == TargetOpcode::INSERT_SUBREG ||
        POpc == TargetOpcode::SUBREG_TO_REG) {
      MVT VT = PN->getSimpleValueType(0);
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
      continue;
    }
    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
    for (unsigned i = 0; i != NumDefs; ++i) {
      MVT VT = PN->getSimpleValueType(i);
      if (!PN->hasAnyUseOfValue(i))
        continue;
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
        // Register pressure tracking is imprecise. This can happen.
        RegPressure[RCId] = 0;
      else
        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
    }
  }
  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
  // may transfer data dependencies to CopyToReg.
  if (SU->NumSuccs && N->isMachineOpcode()) {
    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
      MVT VT = N->getSimpleValueType(i);
      if (VT == MVT::Glue || VT == MVT::Other)
        continue;
      if (!N->hasAnyUseOfValue(i))
        continue;
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
    }
  }
  LLVM_DEBUG(dumpRegPressure());
}
//===----------------------------------------------------------------------===//
//           Dynamic Node Priority for Register Pressure Reduction
//===----------------------------------------------------------------------===//
/// closestSucc - Returns the scheduled cycle of the successor which is
/// closest to the current cycle.
static unsigned closestSucc(const SUnit *SU) {
  unsigned MaxHeight = 0;
  for (const SDep &Succ : SU->Succs) {
    if (Succ.isCtrl()) continue;  // ignore chain succs
    unsigned Height = Succ.getSUnit()->getHeight();
    // If there are bunch of CopyToRegs stacked up, they should be considered
    // to be at the same position.
    if (Succ.getSUnit()->getNode() &&
        Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
      Height = closestSucc(Succ.getSUnit())+1;
    if (Height > MaxHeight)
      MaxHeight = Height;
  }
  return MaxHeight;
}
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
/// for scratch registers, i.e. number of data dependencies.
static unsigned calcMaxScratches(const SUnit *SU) {
  unsigned Scratches = 0;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;  // ignore chain preds
    Scratches++;
  }
  return Scratches;
}
/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
/// CopyFromReg from a virtual register.
static bool hasOnlyLiveInOpers(const SUnit *SU) {
  bool RetVal = false;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;
    const SUnit *PredSU = Pred.getSUnit();
    if (PredSU->getNode() &&
        PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
      unsigned Reg =
        cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
      if (Register::isVirtualRegister(Reg)) {
        RetVal = true;
        continue;
      }
    }
    return false;
  }
  return RetVal;
}
/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
/// CopyToReg to a virtual register. This SU def is probably a liveout and
/// it has no other use. It should be scheduled closer to the terminator.
static bool hasOnlyLiveOutUses(const SUnit *SU) {
  bool RetVal = false;
  for (const SDep &Succ : SU->Succs) {
    if (Succ.isCtrl()) continue;
    const SUnit *SuccSU = Succ.getSUnit();
    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
      unsigned Reg =
        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
      if (Register::isVirtualRegister(Reg)) {
        RetVal = true;
        continue;
      }
    }
    return false;
  }
  return RetVal;
}
// Set isVRegCycle for a node with only live in opers and live out uses. Also
// set isVRegCycle for its CopyFromReg operands.
//
// This is only relevant for single-block loops, in which case the VRegCycle
// node is likely an induction variable in which the operand and target virtual
// registers should be coalesced (e.g. pre/post increment values). Setting the
// isVRegCycle flag helps the scheduler prioritize other uses of the same
// CopyFromReg so that this node becomes the virtual register "kill". This
// avoids interference between the values live in and out of the block and
// eliminates a copy inside the loop.
static void initVRegCycle(SUnit *SU) {
  if (DisableSchedVRegCycle)
    return;
  if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
    return;
  LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
  SU->isVRegCycle = true;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;
    Pred.getSUnit()->isVRegCycle = true;
  }
}
// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
// CopyFromReg operands. We should no longer penalize other uses of this VReg.
static void resetVRegCycle(SUnit *SU) {
  if (!SU->isVRegCycle)
    return;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;  // ignore chain preds
    SUnit *PredSU = Pred.getSUnit();
    if (PredSU->isVRegCycle) {
      assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
             "VRegCycle def must be CopyFromReg");
      Pred.getSUnit()->isVRegCycle = false;
    }
  }
}
// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
// means a node that defines the VRegCycle has not been scheduled yet.
static bool hasVRegCycleUse(const SUnit *SU) {
  // If this SU also defines the VReg, don't hoist it as a "use".
  if (SU->isVRegCycle)
    return false;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;  // ignore chain preds
    if (Pred.getSUnit()->isVRegCycle &&
        Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
      LLVM_DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
      return true;
    }
  }
  return false;
}
// Check for either a dependence (latency) or resource (hazard) stall.
//
// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
  if ((int)SPQ->getCurCycle() < Height) return true;
  if (SPQ->getHazardRec()->getHazardType(SU, 0)
      != ScheduleHazardRecognizer::NoHazard)
    return true;
  return false;
}
// Return -1 if left has higher priority, 1 if right has higher priority.
// Return 0 if latency-based priority is equivalent.
static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
                            RegReductionPQBase *SPQ) {
  // Scheduling an instruction that uses a VReg whose postincrement has not yet
  // been scheduled will induce a copy. Model this as an extra cycle of latency.
  int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
  int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
  int LHeight = (int)left->getHeight() + LPenalty;
  int RHeight = (int)right->getHeight() + RPenalty;
  bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
    BUHasStall(left, LHeight, SPQ);
  bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
    BUHasStall(right, RHeight, SPQ);
  // If scheduling one of the node will cause a pipeline stall, delay it.
  // If scheduling either one of the node will cause a pipeline stall, sort
  // them according to their height.
  if (LStall) {
    if (!RStall)
      return 1;
    if (LHeight != RHeight)
      return LHeight > RHeight ? 1 : -1;
  } else if (RStall)
    return -1;
  // If either node is scheduling for latency, sort them by height/depth
  // and latency.
  if (!checkPref || (left->SchedulingPref == Sched::ILP ||
                     right->SchedulingPref == Sched::ILP)) {
    // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
    // is enabled, grouping instructions by cycle, then its height is already
    // covered so only its depth matters. We also reach this point if both stall
    // but have the same height.
    if (!SPQ->getHazardRec()->isEnabled()) {
      if (LHeight != RHeight)
        return LHeight > RHeight ? 1 : -1;
    }
    int LDepth = left->getDepth() - LPenalty;
    int RDepth = right->getDepth() - RPenalty;
    if (LDepth != RDepth) {
      LLVM_DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
                        << ") depth " << LDepth << " vs SU (" << right->NodeNum
                        << ") depth " << RDepth << "\n");
      return LDepth < RDepth ? 1 : -1;
    }
    if (left->Latency != right->Latency)
      return left->Latency > right->Latency ? 1 : -1;
  }
  return 0;
}
static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
  // Schedule physical register definitions close to their use. This is
  // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
  // long as shortening physreg live ranges is generally good, we can defer
  // creating a subtarget hook.
  if (!DisableSchedPhysRegJoin) {
    bool LHasPhysReg = left->hasPhysRegDefs;
    bool RHasPhysReg = right->hasPhysRegDefs;
    if (LHasPhysReg != RHasPhysReg) {
      #ifndef NDEBUG
      static const char *const PhysRegMsg[] = { " has no physreg",
                                                " defines a physreg" };
      #endif
      LLVM_DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
                        << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum
                        << ") " << PhysRegMsg[RHasPhysReg] << "\n");
      return LHasPhysReg < RHasPhysReg;
    }
  }
  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
  unsigned LPriority = SPQ->getNodePriority(left);
  unsigned RPriority = SPQ->getNodePriority(right);
  // Be really careful about hoisting call operands above previous calls.
  // Only allows it if it would reduce register pressure.
  if (left->isCall && right->isCallOp) {
    unsigned RNumVals = right->getNode()->getNumValues();
    RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
  }
  if (right->isCall && left->isCallOp) {
    unsigned LNumVals = left->getNode()->getNumValues();
    LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
  }
  if (LPriority != RPriority)
    return LPriority > RPriority;
  // One or both of the nodes are calls and their sethi-ullman numbers are the
  // same, then keep source order.
  if (left->isCall || right->isCall) {
    unsigned LOrder = SPQ->getNodeOrdering(left);
    unsigned ROrder = SPQ->getNodeOrdering(right);
    // Prefer an ordering where the lower the non-zero order number, the higher
    // the preference.
    if ((LOrder || ROrder) && LOrder != ROrder)
      return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
  }
  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
  // e.g.
  // t1 = op t2, c1
  // t3 = op t4, c2
  //
  // and the following instructions are both ready.
  // t2 = op c3
  // t4 = op c4
  //
  // Then schedule t2 = op first.
  // i.e.
  // t4 = op c4
  // t2 = op c3
  // t1 = op t2, c1
  // t3 = op t4, c2
  //
  // This creates more short live intervals.
  unsigned LDist = closestSucc(left);
  unsigned RDist = closestSucc(right);
  if (LDist != RDist)
    return LDist < RDist;
  // How many registers becomes live when the node is scheduled.
  unsigned LScratch = calcMaxScratches(left);
  unsigned RScratch = calcMaxScratches(right);
  if (LScratch != RScratch)
    return LScratch > RScratch;
  // Comparing latency against a call makes little sense unless the node
  // is register pressure-neutral.
  if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
    return (left->NodeQueueId > right->NodeQueueId);
  // Do not compare latencies when one or both of the nodes are calls.
  if (!DisableSchedCycles &&
      !(left->isCall || right->isCall)) {
    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
    if (result != 0)
      return result > 0;
  }
  else {
    if (left->getHeight() != right->getHeight())
      return left->getHeight() > right->getHeight();
    if (left->getDepth() != right->getDepth())
      return left->getDepth() < right->getDepth();
  }
  assert(left->NodeQueueId && right->NodeQueueId &&
         "NodeQueueId cannot be zero");
  return (left->NodeQueueId > right->NodeQueueId);
}
// Bottom up
bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;
  return BURRSort(left, right, SPQ);
}
// Source order, otherwise bottom up.
bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;
  unsigned LOrder = SPQ->getNodeOrdering(left);
  unsigned ROrder = SPQ->getNodeOrdering(right);
  // Prefer an ordering where the lower the non-zero order number, the higher
  // the preference.
  if ((LOrder || ROrder) && LOrder != ROrder)
    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
  return BURRSort(left, right, SPQ);
}
// If the time between now and when the instruction will be ready can cover
// the spill code, then avoid adding it to the ready queue. This gives long
// stalls highest priority and allows hoisting across calls. It should also
// speed up processing the available queue.
bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
  static const unsigned ReadyDelay = 3;
  if (SPQ->MayReduceRegPressure(SU)) return true;
  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
      != ScheduleHazardRecognizer::NoHazard)
    return false;
  return true;
}
// Return true if right should be scheduled with higher priority than left.
bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;
  if (left->isCall || right->isCall)
    // No way to compute latency of calls.
    return BURRSort(left, right, SPQ);
  bool LHigh = SPQ->HighRegPressure(left);
  bool RHigh = SPQ->HighRegPressure(right);
  // Avoid causing spills. If register pressure is high, schedule for
  // register pressure reduction.
  if (LHigh && !RHigh) {
    LLVM_DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
                      << right->NodeNum << ")\n");
    return true;
  }
  else if (!LHigh && RHigh) {
    LLVM_DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
                      << left->NodeNum << ")\n");
    return false;
  }
  if (!LHigh && !RHigh) {
    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
    if (result != 0)
      return result > 0;
  }
  return BURRSort(left, right, SPQ);
}
// Schedule as many instructions in each cycle as possible. So don't make an
// instruction available unless it is ready in the current cycle.
bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
  if (SU->getHeight() > CurCycle) return false;
  if (SPQ->getHazardRec()->getHazardType(SU, 0)
      != ScheduleHazardRecognizer::NoHazard)
    return false;
  return true;
}
static bool canEnableCoalescing(SUnit *SU) {
  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
    // CopyToReg should be close to its uses to facilitate coalescing and
    // avoid spilling.
    return true;
  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
      Opc == TargetOpcode::SUBREG_TO_REG ||
      Opc == TargetOpcode::INSERT_SUBREG)
    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
    // close to their uses to facilitate coalescing.
    return true;
  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
    // If SU does not have a register def, schedule it close to its uses
    // because it does not lengthen any live ranges.
    return true;
  return false;
}
// list-ilp is currently an experimental scheduler that allows various
// heuristics to be enabled prior to the normal register reduction logic.
bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;
  if (left->isCall || right->isCall)
    // No way to compute latency of calls.
    return BURRSort(left, right, SPQ);
  unsigned LLiveUses = 0, RLiveUses = 0;
  int LPDiff = 0, RPDiff = 0;
  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
  }
  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
    LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum
                      << "): " << LPDiff << " != SU(" << right->NodeNum
                      << "): " << RPDiff << "\n");
    return LPDiff > RPDiff;
  }
  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
    bool LReduce = canEnableCoalescing(left);
    bool RReduce = canEnableCoalescing(right);
    if (LReduce && !RReduce) return false;
    if (RReduce && !LReduce) return true;
  }
  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
    LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
                      << " != SU(" << right->NodeNum << "): " << RLiveUses
                      << "\n");
    return LLiveUses < RLiveUses;
  }
  if (!DisableSchedStalls) {
    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
    if (LStall != RStall)
      return left->getHeight() > right->getHeight();
  }
  if (!DisableSchedCriticalPath) {
    int spread = (int)left->getDepth() - (int)right->getDepth();
    if (std::abs(spread) > MaxReorderWindow) {
      LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
                        << left->getDepth() << " != SU(" << right->NodeNum
                        << "): " << right->getDepth() << "\n");
      return left->getDepth() < right->getDepth();
    }
  }
  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
    int spread = (int)left->getHeight() - (int)right->getHeight();
    if (std::abs(spread) > MaxReorderWindow)
      return left->getHeight() > right->getHeight();
  }
  return BURRSort(left, right, SPQ);
}
void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
  SUnits = &sunits;
  // Add pseudo dependency edges for two-address nodes.
  if (!Disable2AddrHack)
    AddPseudoTwoAddrDeps();
  // Reroute edges to nodes with multiple uses.
  if (!TracksRegPressure && !SrcOrder)
    PrescheduleNodesWithMultipleUses();
  // Calculate node priorities.
  CalculateSethiUllmanNumbers();
  // For single block loops, mark nodes that look like canonical IV increments.
  if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
    for (SUnit &SU : sunits)
      initVRegCycle(&SU);
}
//===----------------------------------------------------------------------===//
//                    Preschedule for Register Pressure
//===----------------------------------------------------------------------===//
bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
  if (SU->isTwoAddress) {
    unsigned Opc = SU->getNode()->getMachineOpcode();
    const MCInstrDesc &MCID = TII->get(Opc);
    unsigned NumRes = MCID.getNumDefs();
    unsigned NumOps = MCID.getNumOperands() - NumRes;
    for (unsigned i = 0; i != NumOps; ++i) {
      if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
        SDNode *DU = SU->getNode()->getOperand(i).getNode();
        if (DU->getNodeId() != -1 &&
            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
          return true;
      }
    }
  }
  return false;
}
/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
/// successor's explicit physregs whose definition can reach DepSU.
/// i.e. DepSU should not be scheduled above SU.
static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
                                         ScheduleDAGRRList *scheduleDAG,
                                         const TargetInstrInfo *TII,
                                         const TargetRegisterInfo *TRI) {
  const MCPhysReg *ImpDefs
    = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
  const uint32_t *RegMask = getNodeRegMask(SU->getNode());
  if(!ImpDefs && !RegMask)
    return false;
  for (const SDep &Succ : SU->Succs) {
    SUnit *SuccSU = Succ.getSUnit();
    for (const SDep &SuccPred : SuccSU->Preds) {
      if (!SuccPred.isAssignedRegDep())
        continue;
      if (RegMask &&
          MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
          scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
        return true;
      if (ImpDefs)
        for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
          // Return true if SU clobbers this physical register use and the
          // definition of the register reaches from DepSU. IsReachable queries
          // a topological forward sort of the DAG (following the successors).
          if (TRI->regsOverlap(*ImpDef, SuccPred.getReg()) &&
              scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
            return true;
    }
  }
  return false;
}
/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
/// physical register defs.
static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
                                  const TargetInstrInfo *TII,
                                  const TargetRegisterInfo *TRI) {
  SDNode *N = SuccSU->getNode();
  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
  const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
  assert(ImpDefs && "Caller should check hasPhysRegDefs");
  for (const SDNode *SUNode = SU->getNode(); SUNode;
       SUNode = SUNode->getGluedNode()) {
    if (!SUNode->isMachineOpcode())
      continue;
    const MCPhysReg *SUImpDefs =
      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
    const uint32_t *SURegMask = getNodeRegMask(SUNode);
    if (!SUImpDefs && !SURegMask)
      continue;
    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
      MVT VT = N->getSimpleValueType(i);
      if (VT == MVT::Glue || VT == MVT::Other)
        continue;
      if (!N->hasAnyUseOfValue(i))
        continue;
      unsigned Reg = ImpDefs[i - NumDefs];
      if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
        return true;
      if (!SUImpDefs)
        continue;
      for (;*SUImpDefs; ++SUImpDefs) {
        unsigned SUReg = *SUImpDefs;
        if (TRI->regsOverlap(Reg, SUReg))
          return true;
      }
    }
  }
  return false;
}
/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
/// are not handled well by the general register pressure reduction
/// heuristics. When presented with code like this:
///
///      N
///    / |
///   /  |
///  U  store
///  |
/// ...
///
/// the heuristics tend to push the store up, but since the
/// operand of the store has another use (U), this would increase
/// the length of that other use (the U->N edge).
///
/// This function transforms code like the above to route U's
/// dependence through the store when possible, like this:
///
///      N
///      ||
///      ||
///     store
///       |
///       U
///       |
///      ...
///
/// This results in the store being scheduled immediately
/// after N, which shortens the U->N live range, reducing
/// register pressure.
void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
  // Visit all the nodes in topological order, working top-down.
  for (SUnit &SU : *SUnits) {
    // For now, only look at nodes with no data successors, such as stores.
    // These are especially important, due to the heuristics in
    // getNodePriority for nodes with no data successors.
    if (SU.NumSuccs != 0)
      continue;
    // For now, only look at nodes with exactly one data predecessor.
    if (SU.NumPreds != 1)
      continue;
    // Avoid prescheduling copies to virtual registers, which don't behave
    // like other nodes from the perspective of scheduling heuristics.
    if (SDNode *N = SU.getNode())
      if (N->getOpcode() == ISD::CopyToReg &&
          Register::isVirtualRegister(
              cast<RegisterSDNode>(N->getOperand(1))->getReg()))
        continue;
    SDNode *PredFrameSetup = nullptr;
    for (const SDep &Pred : SU.Preds)
      if (Pred.isCtrl() && Pred.getSUnit()) {
        // Find the predecessor which is not data dependence.
        SDNode *PredND = Pred.getSUnit()->getNode();
        // If PredND is FrameSetup, we should not pre-scheduled the node,
        // or else, when bottom up scheduling, ADJCALLSTACKDOWN and
        // ADJCALLSTACKUP may hold CallResource too long and make other
        // calls can't be scheduled. If there's no other available node
        // to schedule, the schedular will try to rename the register by
        // creating copy to avoid the conflict which will fail because
        // CallResource is not a real physical register.
        if (PredND && PredND->isMachineOpcode() &&
            (PredND->getMachineOpcode() == TII->getCallFrameSetupOpcode())) {
          PredFrameSetup = PredND;
          break;
        }
      }
    // Skip the node has FrameSetup parent.
    if (PredFrameSetup != nullptr)
      continue;
    // Locate the single data predecessor.
    SUnit *PredSU = nullptr;
    for (const SDep &Pred : SU.Preds)
      if (!Pred.isCtrl()) {
        PredSU = Pred.getSUnit();
        break;
      }
    assert(PredSU);
    // Don't rewrite edges that carry physregs, because that requires additional
    // support infrastructure.
    if (PredSU->hasPhysRegDefs)
      continue;
    // Short-circuit the case where SU is PredSU's only data successor.
    if (PredSU->NumSuccs == 1)
      continue;
    // Avoid prescheduling to copies from virtual registers, which don't behave
    // like other nodes from the perspective of scheduling heuristics.
    if (SDNode *N = SU.getNode())
      if (N->getOpcode() == ISD::CopyFromReg &&
          Register::isVirtualRegister(
              cast<RegisterSDNode>(N->getOperand(1))->getReg()))
        continue;
    // Perform checks on the successors of PredSU.
    for (const SDep &PredSucc : PredSU->Succs) {
      SUnit *PredSuccSU = PredSucc.getSUnit();
      if (PredSuccSU == &SU) continue;
      // If PredSU has another successor with no data successors, for
      // now don't attempt to choose either over the other.
      if (PredSuccSU->NumSuccs == 0)
        goto outer_loop_continue;
      // Don't break physical register dependencies.
      if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
        if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
          goto outer_loop_continue;
      // Don't introduce graph cycles.
      if (scheduleDAG->IsReachable(&SU, PredSuccSU))
        goto outer_loop_continue;
    }
    // Ok, the transformation is safe and the heuristics suggest it is
    // profitable. Update the graph.
    LLVM_DEBUG(
        dbgs() << "    Prescheduling SU #" << SU.NodeNum << " next to PredSU #"
               << PredSU->NodeNum
               << " to guide scheduling in the presence of multiple uses\n");
    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
      SDep Edge = PredSU->Succs[i];
      assert(!Edge.isAssignedRegDep());
      SUnit *SuccSU = Edge.getSUnit();
      if (SuccSU != &SU) {
        Edge.setSUnit(PredSU);
        scheduleDAG->RemovePred(SuccSU, Edge);
        scheduleDAG->AddPredQueued(&SU, Edge);
        Edge.setSUnit(&SU);
        scheduleDAG->AddPredQueued(SuccSU, Edge);
        --i;
      }
    }
  outer_loop_continue:;
  }
}
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
/// it as a def&use operand. Add a pseudo control edge from it to the other
/// node (if it won't create a cycle) so the two-address one will be scheduled
/// first (lower in the schedule). If both nodes are two-address, favor the
/// one that has a CopyToReg use (more likely to be a loop induction update).
/// If both are two-address, but one is commutable while the other is not
/// commutable, favor the one that's not commutable.
void RegReductionPQBase::AddPseudoTwoAddrDeps() {
  for (SUnit &SU : *SUnits) {
    if (!SU.isTwoAddress)
      continue;
    SDNode *Node = SU.getNode();
    if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
      continue;
    bool isLiveOut = hasOnlyLiveOutUses(&SU);
    unsigned Opc = Node->getMachineOpcode();
    const MCInstrDesc &MCID = TII->get(Opc);
    unsigned NumRes = MCID.getNumDefs();
    unsigned NumOps = MCID.getNumOperands() - NumRes;
    for (unsigned j = 0; j != NumOps; ++j) {
      if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
        continue;
      SDNode *DU = SU.getNode()->getOperand(j).getNode();
      if (DU->getNodeId() == -1)
        continue;
      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
      if (!DUSU)
        continue;
      for (const SDep &Succ : DUSU->Succs) {
        if (Succ.isCtrl())
          continue;
        SUnit *SuccSU = Succ.getSUnit();
        if (SuccSU == &SU)
          continue;
        // Be conservative. Ignore if nodes aren't at roughly the same
        // depth and height.
        if (SuccSU->getHeight() < SU.getHeight() &&
            (SU.getHeight() - SuccSU->getHeight()) > 1)
          continue;
        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
        // constrains whatever is using the copy, instead of the copy
        // itself. In the case that the copy is coalesced, this
        // preserves the intent of the pseudo two-address heurietics.
        while (SuccSU->Succs.size() == 1 &&
               SuccSU->getNode()->isMachineOpcode() &&
               SuccSU->getNode()->getMachineOpcode() ==
                 TargetOpcode::COPY_TO_REGCLASS)
          SuccSU = SuccSU->Succs.front().getSUnit();
        // Don't constrain non-instruction nodes.
        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
          continue;
        // Don't constrain nodes with physical register defs if the
        // predecessor can clobber them.
        if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
          if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
            continue;
        }
        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
        // these may be coalesced away. We want them close to their uses.
        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
            SuccOpc == TargetOpcode::INSERT_SUBREG ||
            SuccOpc == TargetOpcode::SUBREG_TO_REG)
          continue;
        if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
            (!canClobber(SuccSU, DUSU) ||
             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
             (!SU.isCommutable && SuccSU->isCommutable)) &&
            !scheduleDAG->IsReachable(SuccSU, &SU)) {
          LLVM_DEBUG(dbgs()
                     << "    Adding a pseudo-two-addr edge from SU #"
                     << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
          scheduleDAG->AddPredQueued(&SU, SDep(SuccSU, SDep::Artificial));
        }
      }
    }
  }
}
//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//
ScheduleDAGSDNodes *
llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
                                 CodeGenOpt::Level OptLevel) {
  const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
  BURegReductionPriorityQueue *PQ =
    new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}
ScheduleDAGSDNodes *
llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
                                   CodeGenOpt::Level OptLevel) {
  const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
  SrcRegReductionPriorityQueue *PQ =
    new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}
ScheduleDAGSDNodes *
llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
                                   CodeGenOpt::Level OptLevel) {
  const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
  const TargetLowering *TLI = IS->TLI;
  HybridBURRPriorityQueue *PQ =
    new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}
ScheduleDAGSDNodes *
llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
                                CodeGenOpt::Level OptLevel) {
  const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
  const TargetLowering *TLI = IS->TLI;
  ILPBURRPriorityQueue *PQ =
    new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}
 |