1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Class definitions.
//===----------------------------------------------------------------------===//
class SystemZReg<string n> : Register<n> {
let Namespace = "SystemZ";
}
class SystemZRegWithSubregs<string n, list<Register> subregs>
: RegisterWithSubRegs<n, subregs> {
let Namespace = "SystemZ";
}
let Namespace = "SystemZ" in {
def subreg_l32 : SubRegIndex<32, 0>; // Also acts as subreg_ll32.
def subreg_h32 : SubRegIndex<32, 32>; // Also acts as subreg_lh32.
def subreg_l64 : SubRegIndex<64, 0>;
def subreg_h64 : SubRegIndex<64, 64>;
def subreg_hh32 : ComposedSubRegIndex<subreg_h64, subreg_h32>;
def subreg_hl32 : ComposedSubRegIndex<subreg_h64, subreg_l32>;
}
// Define a register class that contains values of types TYPES and an
// associated operand called NAME. SIZE is the size and alignment
// of the registers and REGLIST is the list of individual registers.
multiclass SystemZRegClass<string name, list<ValueType> types, int size,
dag regList, bit allocatable = 1> {
def AsmOperand : AsmOperandClass {
let Name = name;
let ParserMethod = "parse"#name;
let RenderMethod = "addRegOperands";
}
let isAllocatable = allocatable in
def Bit : RegisterClass<"SystemZ", types, size, regList> {
let Size = size;
}
def "" : RegisterOperand<!cast<RegisterClass>(name#"Bit")> {
let ParserMatchClass = !cast<AsmOperandClass>(name#"AsmOperand");
}
}
//===----------------------------------------------------------------------===//
// General-purpose registers
//===----------------------------------------------------------------------===//
// Lower 32 bits of one of the 16 64-bit general-purpose registers
class GPR32<bits<16> num, string n> : SystemZReg<n> {
let HWEncoding = num;
}
// One of the 16 64-bit general-purpose registers.
class GPR64<bits<16> num, string n, GPR32 low, GPR32 high>
: SystemZRegWithSubregs<n, [low, high]> {
let HWEncoding = num;
let SubRegIndices = [subreg_l32, subreg_h32];
let CoveredBySubRegs = 1;
}
// 8 even-odd pairs of GPR64s.
class GPR128<bits<16> num, string n, GPR64 low, GPR64 high>
: SystemZRegWithSubregs<n, [low, high]> {
let HWEncoding = num;
let SubRegIndices = [subreg_l64, subreg_h64];
let CoveredBySubRegs = 1;
}
// General-purpose registers
foreach I = 0-15 in {
def R#I#L : GPR32<I, "r"#I>;
def R#I#H : GPR32<I, "r"#I>;
def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>,
DwarfRegNum<[I]>;
}
foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"),
!cast<GPR64>("R"#I#"D")>;
}
/// Allocate the callee-saved R6-R13 backwards. That way they can be saved
/// together with R14 and R15 in one prolog instruction.
defm GR32 : SystemZRegClass<"GR32", [i32], 32,
(add (sequence "R%uL", 0, 5),
(sequence "R%uL", 15, 6))>;
defm GRH32 : SystemZRegClass<"GRH32", [i32], 32,
(add (sequence "R%uH", 0, 5),
(sequence "R%uH", 15, 6))>;
defm GR64 : SystemZRegClass<"GR64", [i64], 64,
(add (sequence "R%uD", 0, 5),
(sequence "R%uD", 15, 6))>;
// Combine the low and high GR32s into a single class. This can only be
// used for virtual registers if the high-word facility is available.
defm GRX32 : SystemZRegClass<"GRX32", [i32], 32,
(add (sequence "R%uL", 0, 5),
(sequence "R%uH", 0, 5),
R15L, R15H, R14L, R14H, R13L, R13H,
R12L, R12H, R11L, R11H, R10L, R10H,
R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>;
// The architecture doesn't really have any i128 support, so model the
// register pairs as untyped instead.
defm GR128 : SystemZRegClass<"GR128", [untyped], 128,
(add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>;
// Base and index registers. Everything except R0, which in an address
// context evaluates as 0.
defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>;
defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>;
// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
// of a GR128.
defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>;
// Any type register. Used for .insn directives when we don't know what the
// register types could be.
defm AnyReg : SystemZRegClass<"AnyReg",
[i64, f64, v8i8, v4i16, v2i32, v2f32], 64,
(add (sequence "R%uD", 0, 15),
(sequence "F%uD", 0, 15),
(sequence "V%u", 0, 15)), 0/*allocatable*/>;
//===----------------------------------------------------------------------===//
// Floating-point registers
//===----------------------------------------------------------------------===//
// Maps FPR register numbers to their DWARF encoding.
class DwarfMapping<int id> { int Id = id; }
def F0Dwarf : DwarfMapping<16>;
def F2Dwarf : DwarfMapping<17>;
def F4Dwarf : DwarfMapping<18>;
def F6Dwarf : DwarfMapping<19>;
def F1Dwarf : DwarfMapping<20>;
def F3Dwarf : DwarfMapping<21>;
def F5Dwarf : DwarfMapping<22>;
def F7Dwarf : DwarfMapping<23>;
def F8Dwarf : DwarfMapping<24>;
def F10Dwarf : DwarfMapping<25>;
def F12Dwarf : DwarfMapping<26>;
def F14Dwarf : DwarfMapping<27>;
def F9Dwarf : DwarfMapping<28>;
def F11Dwarf : DwarfMapping<29>;
def F13Dwarf : DwarfMapping<30>;
def F15Dwarf : DwarfMapping<31>;
def F16Dwarf : DwarfMapping<68>;
def F18Dwarf : DwarfMapping<69>;
def F20Dwarf : DwarfMapping<70>;
def F22Dwarf : DwarfMapping<71>;
def F17Dwarf : DwarfMapping<72>;
def F19Dwarf : DwarfMapping<73>;
def F21Dwarf : DwarfMapping<74>;
def F23Dwarf : DwarfMapping<75>;
def F24Dwarf : DwarfMapping<76>;
def F26Dwarf : DwarfMapping<77>;
def F28Dwarf : DwarfMapping<78>;
def F30Dwarf : DwarfMapping<79>;
def F25Dwarf : DwarfMapping<80>;
def F27Dwarf : DwarfMapping<81>;
def F29Dwarf : DwarfMapping<82>;
def F31Dwarf : DwarfMapping<83>;
// Upper 32 bits of one of the floating-point registers
class FPR32<bits<16> num, string n> : SystemZReg<n> {
let HWEncoding = num;
}
// One of the floating-point registers.
class FPR64<bits<16> num, string n, FPR32 high>
: SystemZRegWithSubregs<n, [high]> {
let HWEncoding = num;
let SubRegIndices = [subreg_h32];
}
// 8 pairs of FPR64s, with a one-register gap inbetween.
class FPR128<bits<16> num, string n, FPR64 low, FPR64 high>
: SystemZRegWithSubregs<n, [low, high]> {
let HWEncoding = num;
let SubRegIndices = [subreg_l64, subreg_h64];
let CoveredBySubRegs = 1;
}
// Floating-point registers. Registers 16-31 require the vector facility.
foreach I = 0-15 in {
def F#I#S : FPR32<I, "f"#I>;
def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
}
foreach I = 16-31 in {
def F#I#S : FPR32<I, "v"#I>;
def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>,
DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
}
foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"),
!cast<FPR64>("F"#I#"D")>;
}
// There's no store-multiple instruction for FPRs, so we're not fussy
// about the order in which call-saved registers are allocated.
defm FP32 : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>;
defm FP64 : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>;
defm FP128 : SystemZRegClass<"FP128", [f128], 128,
(add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>;
//===----------------------------------------------------------------------===//
// Vector registers
//===----------------------------------------------------------------------===//
// A full 128-bit vector register, with an FPR64 as its high part.
class VR128<bits<16> num, string n, FPR64 high>
: SystemZRegWithSubregs<n, [high]> {
let HWEncoding = num;
let SubRegIndices = [subreg_h64];
}
// Full vector registers.
foreach I = 0-31 in {
def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>,
DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
}
// Class used to store 32-bit values in the first element of a vector
// register. f32 scalars are used for the WLEDB and WLDEB instructions.
defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32,
(add (sequence "F%uS", 0, 7),
(sequence "F%uS", 16, 31),
(sequence "F%uS", 8, 15))>;
// Class used to store 64-bit values in the upper half of a vector register.
// The vector facility also includes scalar f64 instructions that operate
// on the full vector register set.
defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64,
(add (sequence "F%uD", 0, 7),
(sequence "F%uD", 16, 31),
(sequence "F%uD", 8, 15))>;
// The subset of vector registers that can be used for floating-point
// operations too.
defm VF128 : SystemZRegClass<"VF128",
[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
(sequence "V%u", 0, 15)>;
// All vector registers.
defm VR128 : SystemZRegClass<"VR128",
[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, f128],
128, (add (sequence "V%u", 0, 7),
(sequence "V%u", 16, 31),
(sequence "V%u", 8, 15))>;
// Attaches a ValueType to a register operand, to make the instruction
// definitions easier.
class TypedReg<ValueType vtin, RegisterOperand opin> {
ValueType vt = vtin;
RegisterOperand op = opin;
}
def v32f : TypedReg<i32, VR32>;
def v32sb : TypedReg<f32, VR32>;
def v64g : TypedReg<i64, VR64>;
def v64db : TypedReg<f64, VR64>;
def v128b : TypedReg<v16i8, VR128>;
def v128h : TypedReg<v8i16, VR128>;
def v128f : TypedReg<v4i32, VR128>;
def v128g : TypedReg<v2i64, VR128>;
def v128q : TypedReg<v16i8, VR128>;
def v128sb : TypedReg<v4f32, VR128>;
def v128db : TypedReg<v2f64, VR128>;
def v128xb : TypedReg<f128, VR128>;
def v128any : TypedReg<untyped, VR128>;
//===----------------------------------------------------------------------===//
// Other registers
//===----------------------------------------------------------------------===//
// The 2-bit condition code field of the PSW. Every register named in an
// inline asm needs a class associated with it.
def CC : SystemZReg<"cc">;
let isAllocatable = 0, CopyCost = -1 in
def CCR : RegisterClass<"SystemZ", [i32], 32, (add CC)>;
// The floating-point control register.
// Note: We only model the current rounding modes and the IEEE masks.
// IEEE flags and DXC are not modeled here.
def FPC : SystemZReg<"fpc">;
let isAllocatable = 0 in
def FPCRegs : RegisterClass<"SystemZ", [i32], 32, (add FPC)>;
// Access registers.
class ACR32<bits<16> num, string n> : SystemZReg<n> {
let HWEncoding = num;
}
foreach I = 0-15 in {
def A#I : ACR32<I, "a"#I>, DwarfRegNum<[!add(I, 48)]>;
}
defm AR32 : SystemZRegClass<"AR32", [i32], 32,
(add (sequence "A%u", 0, 15)), 0>;
// Control registers.
class CREG64<bits<16> num, string n> : SystemZReg<n> {
let HWEncoding = num;
}
foreach I = 0-15 in {
def C#I : CREG64<I, "c"#I>, DwarfRegNum<[!add(I, 32)]>;
}
defm CR64 : SystemZRegClass<"CR64", [i64], 64,
(add (sequence "C%u", 0, 15)), 0>;
|