| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 
 | //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a pass that optimizes call sequences on x86.
// Currently, it converts movs of function parameters onto the stack into
// pushes. This is beneficial for two main reasons:
// 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
// 2) It is possible to push memory arguments directly. So, if the
//    the transformation is performed pre-reg-alloc, it can help relieve
//    register pressure.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86.h"
#include "X86FrameLowering.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "x86-cf-opt"
static cl::opt<bool>
    NoX86CFOpt("no-x86-call-frame-opt",
               cl::desc("Avoid optimizing x86 call frames for size"),
               cl::init(false), cl::Hidden);
namespace {
class X86CallFrameOptimization : public MachineFunctionPass {
public:
  X86CallFrameOptimization() : MachineFunctionPass(ID) { }
  bool runOnMachineFunction(MachineFunction &MF) override;
  static char ID;
private:
  // Information we know about a particular call site
  struct CallContext {
    CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
    // Iterator referring to the frame setup instruction
    MachineBasicBlock::iterator FrameSetup;
    // Actual call instruction
    MachineInstr *Call = nullptr;
    // A copy of the stack pointer
    MachineInstr *SPCopy = nullptr;
    // The total displacement of all passed parameters
    int64_t ExpectedDist = 0;
    // The sequence of storing instructions used to pass the parameters
    SmallVector<MachineInstr *, 4> ArgStoreVector;
    // True if this call site has no stack parameters
    bool NoStackParams = false;
    // True if this call site can use push instructions
    bool UsePush = false;
  };
  typedef SmallVector<CallContext, 8> ContextVector;
  bool isLegal(MachineFunction &MF);
  bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
  void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
                       MachineBasicBlock::iterator I, CallContext &Context);
  void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
  MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
                                   unsigned Reg);
  enum InstClassification { Convert, Skip, Exit };
  InstClassification classifyInstruction(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator MI,
                                         const X86RegisterInfo &RegInfo,
                                         DenseSet<unsigned int> &UsedRegs);
  StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
  const X86InstrInfo *TII = nullptr;
  const X86FrameLowering *TFL = nullptr;
  const X86Subtarget *STI = nullptr;
  MachineRegisterInfo *MRI = nullptr;
  unsigned SlotSize = 0;
  unsigned Log2SlotSize = 0;
};
} // end anonymous namespace
char X86CallFrameOptimization::ID = 0;
INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
                "X86 Call Frame Optimization", false, false)
// This checks whether the transformation is legal.
// Also returns false in cases where it's potentially legal, but
// we don't even want to try.
bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
  if (NoX86CFOpt.getValue())
    return false;
  // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
  // in the compact unwind encoding that Darwin uses. So, bail if there
  // is a danger of that being generated.
  if (STI->isTargetDarwin() &&
      (!MF.getLandingPads().empty() ||
       (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
    return false;
  // It is not valid to change the stack pointer outside the prolog/epilog
  // on 64-bit Windows.
  if (STI->isTargetWin64())
    return false;
  // You would expect straight-line code between call-frame setup and
  // call-frame destroy. You would be wrong. There are circumstances (e.g.
  // CMOV_GR8 expansion of a select that feeds a function call!) where we can
  // end up with the setup and the destroy in different basic blocks.
  // This is bad, and breaks SP adjustment.
  // So, check that all of the frames in the function are closed inside
  // the same block, and, for good measure, that there are no nested frames.
  //
  // If any call allocates more argument stack memory than the stack
  // probe size, don't do this optimization. Otherwise, this pass
  // would need to synthesize additional stack probe calls to allocate
  // memory for arguments.
  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
  bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF);
  unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF);
  for (MachineBasicBlock &BB : MF) {
    bool InsideFrameSequence = false;
    for (MachineInstr &MI : BB) {
      if (MI.getOpcode() == FrameSetupOpcode) {
        if (TII->getFrameSize(MI) >= StackProbeSize && EmitStackProbeCall)
          return false;
        if (InsideFrameSequence)
          return false;
        InsideFrameSequence = true;
      } else if (MI.getOpcode() == FrameDestroyOpcode) {
        if (!InsideFrameSequence)
          return false;
        InsideFrameSequence = false;
      }
    }
    if (InsideFrameSequence)
      return false;
  }
  return true;
}
// Check whether this transformation is profitable for a particular
// function - in terms of code size.
bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
                                            ContextVector &CallSeqVector) {
  // This transformation is always a win when we do not expect to have
  // a reserved call frame. Under other circumstances, it may be either
  // a win or a loss, and requires a heuristic.
  bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
  if (CannotReserveFrame)
    return true;
  Align StackAlign = TFL->getStackAlign();
  int64_t Advantage = 0;
  for (auto CC : CallSeqVector) {
    // Call sites where no parameters are passed on the stack
    // do not affect the cost, since there needs to be no
    // stack adjustment.
    if (CC.NoStackParams)
      continue;
    if (!CC.UsePush) {
      // If we don't use pushes for a particular call site,
      // we pay for not having a reserved call frame with an
      // additional sub/add esp pair. The cost is ~3 bytes per instruction,
      // depending on the size of the constant.
      // TODO: Callee-pop functions should have a smaller penalty, because
      // an add is needed even with a reserved call frame.
      Advantage -= 6;
    } else {
      // We can use pushes. First, account for the fixed costs.
      // We'll need a add after the call.
      Advantage -= 3;
      // If we have to realign the stack, we'll also need a sub before
      if (!isAligned(StackAlign, CC.ExpectedDist))
        Advantage -= 3;
      // Now, for each push, we save ~3 bytes. For small constants, we actually,
      // save more (up to 5 bytes), but 3 should be a good approximation.
      Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
    }
  }
  return Advantage >= 0;
}
bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
  STI = &MF.getSubtarget<X86Subtarget>();
  TII = STI->getInstrInfo();
  TFL = STI->getFrameLowering();
  MRI = &MF.getRegInfo();
  const X86RegisterInfo &RegInfo =
      *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
  SlotSize = RegInfo.getSlotSize();
  assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
  Log2SlotSize = Log2_32(SlotSize);
  if (skipFunction(MF.getFunction()) || !isLegal(MF))
    return false;
  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
  bool Changed = false;
  ContextVector CallSeqVector;
  for (auto &MBB : MF)
    for (auto &MI : MBB)
      if (MI.getOpcode() == FrameSetupOpcode) {
        CallContext Context;
        collectCallInfo(MF, MBB, MI, Context);
        CallSeqVector.push_back(Context);
      }
  if (!isProfitable(MF, CallSeqVector))
    return false;
  for (auto CC : CallSeqVector) {
    if (CC.UsePush) {
      adjustCallSequence(MF, CC);
      Changed = true;
    }
  }
  return Changed;
}
X86CallFrameOptimization::InstClassification
X86CallFrameOptimization::classifyInstruction(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
  if (MI == MBB.end())
    return Exit;
  // The instructions we actually care about are movs onto the stack or special
  // cases of constant-stores to stack
  switch (MI->getOpcode()) {
    case X86::AND16mi8:
    case X86::AND32mi8:
    case X86::AND64mi8: {
      MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
      return ImmOp.getImm() == 0 ? Convert : Exit;
    }
    case X86::OR16mi8:
    case X86::OR32mi8:
    case X86::OR64mi8: {
      MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
      return ImmOp.getImm() == -1 ? Convert : Exit;
    }
    case X86::MOV32mi:
    case X86::MOV32mr:
    case X86::MOV64mi32:
    case X86::MOV64mr:
      return Convert;
  }
  // Not all calling conventions have only stack MOVs between the stack
  // adjust and the call.
  // We want to tolerate other instructions, to cover more cases.
  // In particular:
  // a) PCrel calls, where we expect an additional COPY of the basereg.
  // b) Passing frame-index addresses.
  // c) Calling conventions that have inreg parameters. These generate
  //    both copies and movs into registers.
  // To avoid creating lots of special cases, allow any instruction
  // that does not write into memory, does not def or use the stack
  // pointer, and does not def any register that was used by a preceding
  // push.
  // (Reading from memory is allowed, even if referenced through a
  // frame index, since these will get adjusted properly in PEI)
  // The reason for the last condition is that the pushes can't replace
  // the movs in place, because the order must be reversed.
  // So if we have a MOV32mr that uses EDX, then an instruction that defs
  // EDX, and then the call, after the transformation the push will use
  // the modified version of EDX, and not the original one.
  // Since we are still in SSA form at this point, we only need to
  // make sure we don't clobber any *physical* registers that were
  // used by an earlier mov that will become a push.
  if (MI->isCall() || MI->mayStore())
    return Exit;
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Register::isPhysicalRegister(Reg))
      continue;
    if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
      return Exit;
    if (MO.isDef()) {
      for (unsigned int U : UsedRegs)
        if (RegInfo.regsOverlap(Reg, U))
          return Exit;
    }
  }
  return Skip;
}
void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
                                               MachineBasicBlock &MBB,
                                               MachineBasicBlock::iterator I,
                                               CallContext &Context) {
  // Check that this particular call sequence is amenable to the
  // transformation.
  const X86RegisterInfo &RegInfo =
      *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
  // We expect to enter this at the beginning of a call sequence
  assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
  MachineBasicBlock::iterator FrameSetup = I++;
  Context.FrameSetup = FrameSetup;
  // How much do we adjust the stack? This puts an upper bound on
  // the number of parameters actually passed on it.
  unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
  // A zero adjustment means no stack parameters
  if (!MaxAdjust) {
    Context.NoStackParams = true;
    return;
  }
  // Skip over DEBUG_VALUE.
  // For globals in PIC mode, we can have some LEAs here. Skip them as well.
  // TODO: Extend this to something that covers more cases.
  while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
    ++I;
  Register StackPtr = RegInfo.getStackRegister();
  auto StackPtrCopyInst = MBB.end();
  // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
  // register.  If it's there, use that virtual register as stack pointer
  // instead. Also, we need to locate this instruction so that we can later
  // safely ignore it while doing the conservative processing of the call chain.
  // The COPY can be located anywhere between the call-frame setup
  // instruction and its first use. We use the call instruction as a boundary
  // because it is usually cheaper to check if an instruction is a call than
  // checking if an instruction uses a register.
  for (auto J = I; !J->isCall(); ++J)
    if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
        J->getOperand(1).getReg() == StackPtr) {
      StackPtrCopyInst = J;
      Context.SPCopy = &*J++;
      StackPtr = Context.SPCopy->getOperand(0).getReg();
      break;
    }
  // Scan the call setup sequence for the pattern we're looking for.
  // We only handle a simple case - a sequence of store instructions that
  // push a sequence of stack-slot-aligned values onto the stack, with
  // no gaps between them.
  if (MaxAdjust > 4)
    Context.ArgStoreVector.resize(MaxAdjust, nullptr);
  DenseSet<unsigned int> UsedRegs;
  for (InstClassification Classification = Skip; Classification != Exit; ++I) {
    // If this is the COPY of the stack pointer, it's ok to ignore.
    if (I == StackPtrCopyInst)
      continue;
    Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
    if (Classification != Convert)
      continue;
    // We know the instruction has a supported store opcode.
    // We only want movs of the form:
    // mov imm/reg, k(%StackPtr)
    // If we run into something else, bail.
    // Note that AddrBaseReg may, counter to its name, not be a register,
    // but rather a frame index.
    // TODO: Support the fi case. This should probably work now that we
    // have the infrastructure to track the stack pointer within a call
    // sequence.
    if (!I->getOperand(X86::AddrBaseReg).isReg() ||
        (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
        !I->getOperand(X86::AddrScaleAmt).isImm() ||
        (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
        (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
        (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
        !I->getOperand(X86::AddrDisp).isImm())
      return;
    int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
    assert(StackDisp >= 0 &&
           "Negative stack displacement when passing parameters");
    // We really don't want to consider the unaligned case.
    if (StackDisp & (SlotSize - 1))
      return;
    StackDisp >>= Log2SlotSize;
    assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
           "Function call has more parameters than the stack is adjusted for.");
    // If the same stack slot is being filled twice, something's fishy.
    if (Context.ArgStoreVector[StackDisp] != nullptr)
      return;
    Context.ArgStoreVector[StackDisp] = &*I;
    for (const MachineOperand &MO : I->uses()) {
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      if (Register::isPhysicalRegister(Reg))
        UsedRegs.insert(Reg);
    }
  }
  --I;
  // We now expect the end of the sequence. If we stopped early,
  // or reached the end of the block without finding a call, bail.
  if (I == MBB.end() || !I->isCall())
    return;
  Context.Call = &*I;
  if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
    return;
  // Now, go through the vector, and see that we don't have any gaps,
  // but only a series of storing instructions.
  auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
  for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
    if (*MMI == nullptr)
      break;
  // If the call had no parameters, do nothing
  if (MMI == Context.ArgStoreVector.begin())
    return;
  // We are either at the last parameter, or a gap.
  // Make sure it's not a gap
  for (; MMI != MME; ++MMI)
    if (*MMI != nullptr)
      return;
  Context.UsePush = true;
}
void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
                                                  const CallContext &Context) {
  // Ok, we can in fact do the transformation for this call.
  // Do not remove the FrameSetup instruction, but adjust the parameters.
  // PEI will end up finalizing the handling of this.
  MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
  MachineBasicBlock &MBB = *(FrameSetup->getParent());
  TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
  DebugLoc DL = FrameSetup->getDebugLoc();
  bool Is64Bit = STI->is64Bit();
  // Now, iterate through the vector in reverse order, and replace the store to
  // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
  // replace uses.
  for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
    MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
    MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
    MachineBasicBlock::iterator Push = nullptr;
    unsigned PushOpcode;
    switch (Store->getOpcode()) {
    default:
      llvm_unreachable("Unexpected Opcode!");
    case X86::AND16mi8:
    case X86::AND32mi8:
    case X86::AND64mi8:
    case X86::OR16mi8:
    case X86::OR32mi8:
    case X86::OR64mi8:
    case X86::MOV32mi:
    case X86::MOV64mi32:
      PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
      // If the operand is a small (8-bit) immediate, we can use a
      // PUSH instruction with a shorter encoding.
      // Note that isImm() may fail even though this is a MOVmi, because
      // the operand can also be a symbol.
      if (PushOp.isImm()) {
        int64_t Val = PushOp.getImm();
        if (isInt<8>(Val))
          PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
      }
      Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
      Push->cloneMemRefs(MF, *Store);
      break;
    case X86::MOV32mr:
    case X86::MOV64mr: {
      Register Reg = PushOp.getReg();
      // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
      // in preparation for the PUSH64. The upper 32 bits can be undef.
      if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
        Register UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
        Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
        BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
        BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
            .addReg(UndefReg)
            .add(PushOp)
            .addImm(X86::sub_32bit);
      }
      // If PUSHrmm is not slow on this target, try to fold the source of the
      // push into the instruction.
      bool SlowPUSHrmm = STI->slowTwoMemOps();
      // Check that this is legal to fold. Right now, we're extremely
      // conservative about that.
      MachineInstr *DefMov = nullptr;
      if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
        PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
        unsigned NumOps = DefMov->getDesc().getNumOperands();
        for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
          Push->addOperand(DefMov->getOperand(i));
        Push->cloneMergedMemRefs(MF, {&*DefMov, &*Store});
        DefMov->eraseFromParent();
      } else {
        PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
                   .addReg(Reg)
                   .getInstr();
        Push->cloneMemRefs(MF, *Store);
      }
      break;
    }
    }
    // For debugging, when using SP-based CFA, we need to adjust the CFA
    // offset after each push.
    // TODO: This is needed only if we require precise CFA.
    if (!TFL->hasFP(MF))
      TFL->BuildCFI(
          MBB, std::next(Push), DL,
          MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
    MBB.erase(Store);
  }
  // The stack-pointer copy is no longer used in the call sequences.
  // There should not be any other users, but we can't commit to that, so:
  if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
    Context.SPCopy->eraseFromParent();
  // Once we've done this, we need to make sure PEI doesn't assume a reserved
  // frame.
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
  FuncInfo->setHasPushSequences(true);
}
MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
    MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
  // Do an extremely restricted form of load folding.
  // ISel will often create patterns like:
  // movl    4(%edi), %eax
  // movl    8(%edi), %ecx
  // movl    12(%edi), %edx
  // movl    %edx, 8(%esp)
  // movl    %ecx, 4(%esp)
  // movl    %eax, (%esp)
  // call
  // Get rid of those with prejudice.
  if (!Register::isVirtualRegister(Reg))
    return nullptr;
  // Make sure this is the only use of Reg.
  if (!MRI->hasOneNonDBGUse(Reg))
    return nullptr;
  MachineInstr &DefMI = *MRI->getVRegDef(Reg);
  // Make sure the def is a MOV from memory.
  // If the def is in another block, give up.
  if ((DefMI.getOpcode() != X86::MOV32rm &&
       DefMI.getOpcode() != X86::MOV64rm) ||
      DefMI.getParent() != FrameSetup->getParent())
    return nullptr;
  // Make sure we don't have any instructions between DefMI and the
  // push that make folding the load illegal.
  for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
    if (I->isLoadFoldBarrier())
      return nullptr;
  return &DefMI;
}
FunctionPass *llvm::createX86CallFrameOptimization() {
  return new X86CallFrameOptimization();
}
 |