| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 
 | //===- X86EvexToVex.cpp ---------------------------------------------------===//
// Compress EVEX instructions to VEX encoding when possible to reduce code size
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file defines the pass that goes over all AVX-512 instructions which
/// are encoded using the EVEX prefix and if possible replaces them by their
/// corresponding VEX encoding which is usually shorter by 2 bytes.
/// EVEX instructions may be encoded via the VEX prefix when the AVX-512
/// instruction has a corresponding AVX/AVX2 opcode, when vector length 
/// accessed by instruction is less than 512 bits and when it does not use 
//  the xmm or the mask registers or xmm/ymm registers with indexes higher than 15.
/// The pass applies code reduction on the generated code for AVX-512 instrs.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86InstComments.h"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
// Including the generated EVEX2VEX tables.
struct X86EvexToVexCompressTableEntry {
  uint16_t EvexOpcode;
  uint16_t VexOpcode;
  bool operator<(const X86EvexToVexCompressTableEntry &RHS) const {
    return EvexOpcode < RHS.EvexOpcode;
  }
  friend bool operator<(const X86EvexToVexCompressTableEntry &TE,
                        unsigned Opc) {
    return TE.EvexOpcode < Opc;
  }
};
#include "X86GenEVEX2VEXTables.inc"
#define EVEX2VEX_DESC "Compressing EVEX instrs to VEX encoding when possible"
#define EVEX2VEX_NAME "x86-evex-to-vex-compress"
#define DEBUG_TYPE EVEX2VEX_NAME
namespace {
class EvexToVexInstPass : public MachineFunctionPass {
  /// For EVEX instructions that can be encoded using VEX encoding, replace
  /// them by the VEX encoding in order to reduce size.
  bool CompressEvexToVexImpl(MachineInstr &MI) const;
public:
  static char ID;
  EvexToVexInstPass() : MachineFunctionPass(ID) { }
  StringRef getPassName() const override { return EVEX2VEX_DESC; }
  /// Loop over all of the basic blocks, replacing EVEX instructions
  /// by equivalent VEX instructions when possible for reducing code size.
  bool runOnMachineFunction(MachineFunction &MF) override;
  // This pass runs after regalloc and doesn't support VReg operands.
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
private:
  /// Machine instruction info used throughout the class.
  const X86InstrInfo *TII = nullptr;
};
} // end anonymous namespace
char EvexToVexInstPass::ID = 0;
bool EvexToVexInstPass::runOnMachineFunction(MachineFunction &MF) {
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
  if (!ST.hasAVX512())
    return false;
  bool Changed = false;
  /// Go over all basic blocks in function and replace
  /// EVEX encoded instrs by VEX encoding when possible.
  for (MachineBasicBlock &MBB : MF) {
    // Traverse the basic block.
    for (MachineInstr &MI : MBB)
      Changed |= CompressEvexToVexImpl(MI);
  }
  return Changed;
}
static bool usesExtendedRegister(const MachineInstr &MI) {
  auto isHiRegIdx = [](unsigned Reg) {
    // Check for XMM register with indexes between 16 - 31.
    if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
      return true;
    // Check for YMM register with indexes between 16 - 31.
    if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
      return true;
    return false;
  };
  // Check that operands are not ZMM regs or
  // XMM/YMM regs with hi indexes between 16 - 31.
  for (const MachineOperand &MO : MI.explicit_operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    assert(!(Reg >= X86::ZMM0 && Reg <= X86::ZMM31) &&
           "ZMM instructions should not be in the EVEX->VEX tables");
    if (isHiRegIdx(Reg))
      return true;
  }
  return false;
}
// Do any custom cleanup needed to finalize the conversion.
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
  (void)NewOpc;
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
  case X86::VALIGNDZ128rri:
  case X86::VALIGNDZ128rmi:
  case X86::VALIGNQZ128rri:
  case X86::VALIGNQZ128rmi: {
    assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
           "Unexpected new opcode!");
    unsigned Scale = (Opc == X86::VALIGNQZ128rri ||
                      Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
    MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
    Imm.setImm(Imm.getImm() * Scale);
    break;
  }
  case X86::VSHUFF32X4Z256rmi:
  case X86::VSHUFF32X4Z256rri:
  case X86::VSHUFF64X2Z256rmi:
  case X86::VSHUFF64X2Z256rri:
  case X86::VSHUFI32X4Z256rmi:
  case X86::VSHUFI32X4Z256rri:
  case X86::VSHUFI64X2Z256rmi:
  case X86::VSHUFI64X2Z256rri: {
    assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr ||
            NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) &&
           "Unexpected new opcode!");
    MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
    int64_t ImmVal = Imm.getImm();
    // Set bit 5, move bit 1 to bit 4, copy bit 0.
    Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
    break;
  }
  case X86::VRNDSCALEPDZ128rri:
  case X86::VRNDSCALEPDZ128rmi:
  case X86::VRNDSCALEPSZ128rri:
  case X86::VRNDSCALEPSZ128rmi:
  case X86::VRNDSCALEPDZ256rri:
  case X86::VRNDSCALEPDZ256rmi:
  case X86::VRNDSCALEPSZ256rri:
  case X86::VRNDSCALEPSZ256rmi:
  case X86::VRNDSCALESDZr:
  case X86::VRNDSCALESDZm:
  case X86::VRNDSCALESSZr:
  case X86::VRNDSCALESSZm:
  case X86::VRNDSCALESDZr_Int:
  case X86::VRNDSCALESDZm_Int:
  case X86::VRNDSCALESSZr_Int:
  case X86::VRNDSCALESSZm_Int:
    const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
    int64_t ImmVal = Imm.getImm();
    // Ensure that only bits 3:0 of the immediate are used.
    if ((ImmVal & 0xf) != ImmVal)
      return false;
    break;
  }
  return true;
}
// For EVEX instructions that can be encoded using VEX encoding
// replace them by the VEX encoding in order to reduce size.
bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr &MI) const {
  // VEX format.
  // # of bytes: 0,2,3  1      1      0,1   0,1,2,4  0,1
  //  [Prefixes] [VEX]  OPCODE ModR/M [SIB] [DISP]  [IMM]
  //
  // EVEX format.
  //  # of bytes: 4    1      1      1      4       / 1         1
  //  [Prefixes]  EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate]
  const MCInstrDesc &Desc = MI.getDesc();
  // Check for EVEX instructions only.
  if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX)
    return false;
  // Check for EVEX instructions with mask or broadcast as in these cases
  // the EVEX prefix is needed in order to carry this information
  // thus preventing the transformation to VEX encoding.
  if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B))
    return false;
  // Check for EVEX instructions with L2 set. These instructions are 512-bits
  // and can't be converted to VEX.
  if (Desc.TSFlags & X86II::EVEX_L2)
    return false;
#ifndef NDEBUG
  // Make sure the tables are sorted.
  static std::atomic<bool> TableChecked(false);
  if (!TableChecked.load(std::memory_order_relaxed)) {
    assert(llvm::is_sorted(X86EvexToVex128CompressTable) &&
           "X86EvexToVex128CompressTable is not sorted!");
    assert(llvm::is_sorted(X86EvexToVex256CompressTable) &&
           "X86EvexToVex256CompressTable is not sorted!");
    TableChecked.store(true, std::memory_order_relaxed);
  }
#endif
  // Use the VEX.L bit to select the 128 or 256-bit table.
  ArrayRef<X86EvexToVexCompressTableEntry> Table =
    (Desc.TSFlags & X86II::VEX_L) ? makeArrayRef(X86EvexToVex256CompressTable)
                                  : makeArrayRef(X86EvexToVex128CompressTable);
  auto I = llvm::lower_bound(Table, MI.getOpcode());
  if (I == Table.end() || I->EvexOpcode != MI.getOpcode())
    return false;
  unsigned NewOpc = I->VexOpcode;
  if (usesExtendedRegister(MI))
    return false;
  if (!performCustomAdjustments(MI, NewOpc))
    return false;
  MI.setDesc(TII->get(NewOpc));
  MI.setAsmPrinterFlag(X86::AC_EVEX_2_VEX);
  return true;
}
INITIALIZE_PASS(EvexToVexInstPass, EVEX2VEX_NAME, EVEX2VEX_DESC, false, false)
FunctionPass *llvm::createX86EvexToVexInsts() {
  return new EvexToVexInstPass();
}
 |