| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 
 | //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass that finds instructions that can be
// re-written as LEA instructions in order to reduce pipeline delays.
// It replaces LEAs with ADD/INC/DEC when that is better for size/speed.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define FIXUPLEA_DESC "X86 LEA Fixup"
#define FIXUPLEA_NAME "x86-fixup-LEAs"
#define DEBUG_TYPE FIXUPLEA_NAME
STATISTIC(NumLEAs, "Number of LEA instructions created");
namespace {
class FixupLEAPass : public MachineFunctionPass {
  enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
  /// Given a machine register, look for the instruction
  /// which writes it in the current basic block. If found,
  /// try to replace it with an equivalent LEA instruction.
  /// If replacement succeeds, then also process the newly created
  /// instruction.
  void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
                    MachineBasicBlock &MBB);
  /// Given a memory access or LEA instruction
  /// whose address mode uses a base and/or index register, look for
  /// an opportunity to replace the instruction which sets the base or index
  /// register with an equivalent LEA instruction.
  void processInstruction(MachineBasicBlock::iterator &I,
                          MachineBasicBlock &MBB);
  /// Given a LEA instruction which is unprofitable
  /// on SlowLEA targets try to replace it with an equivalent ADD instruction.
  void processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
                                    MachineBasicBlock &MBB);
  /// Given a LEA instruction which is unprofitable
  /// on SNB+ try to replace it with other instructions.
  /// According to Intel's Optimization Reference Manual:
  /// " For LEA instructions with three source operands and some specific
  ///   situations, instruction latency has increased to 3 cycles, and must
  ///   dispatch via port 1:
  /// - LEA that has all three source operands: base, index, and offset
  /// - LEA that uses base and index registers where the base is EBP, RBP,
  ///   or R13
  /// - LEA that uses RIP relative addressing mode
  /// - LEA that uses 16-bit addressing mode "
  /// This function currently handles the first 2 cases only.
  void processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
                                 MachineBasicBlock &MBB, bool OptIncDec);
  /// Look for LEAs that are really two address LEAs that we might be able to
  /// turn into regular ADD instructions.
  bool optTwoAddrLEA(MachineBasicBlock::iterator &I,
                     MachineBasicBlock &MBB, bool OptIncDec,
                     bool UseLEAForSP) const;
  /// Determine if an instruction references a machine register
  /// and, if so, whether it reads or writes the register.
  RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
  /// Step backwards through a basic block, looking
  /// for an instruction which writes a register within
  /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
  MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
                                              MachineBasicBlock::iterator &I,
                                              MachineBasicBlock &MBB);
  /// if an instruction can be converted to an
  /// equivalent LEA, insert the new instruction into the basic block
  /// and return a pointer to it. Otherwise, return zero.
  MachineInstr *postRAConvertToLEA(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator &MBBI) const;
public:
  static char ID;
  StringRef getPassName() const override { return FIXUPLEA_DESC; }
  FixupLEAPass() : MachineFunctionPass(ID) { }
  /// Loop over all of the basic blocks,
  /// replacing instructions by equivalent LEA instructions
  /// if needed and when possible.
  bool runOnMachineFunction(MachineFunction &MF) override;
  // This pass runs after regalloc and doesn't support VReg operands.
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
private:
  TargetSchedModel TSM;
  const X86InstrInfo *TII = nullptr;
  const X86RegisterInfo *TRI = nullptr;
};
}
char FixupLEAPass::ID = 0;
INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
MachineInstr *
FixupLEAPass::postRAConvertToLEA(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator &MBBI) const {
  MachineInstr &MI = *MBBI;
  switch (MI.getOpcode()) {
  case X86::MOV32rr:
  case X86::MOV64rr: {
    const MachineOperand &Src = MI.getOperand(1);
    const MachineOperand &Dest = MI.getOperand(0);
    MachineInstr *NewMI =
        BuildMI(MBB, MBBI, MI.getDebugLoc(),
                TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
                                                        : X86::LEA64r))
            .add(Dest)
            .add(Src)
            .addImm(1)
            .addReg(0)
            .addImm(0)
            .addReg(0);
    return NewMI;
  }
  }
  if (!MI.isConvertibleTo3Addr())
    return nullptr;
  switch (MI.getOpcode()) {
  default:
    // Only convert instructions that we've verified are safe.
    return nullptr;
  case X86::ADD64ri32:
  case X86::ADD64ri8:
  case X86::ADD64ri32_DB:
  case X86::ADD64ri8_DB:
  case X86::ADD32ri:
  case X86::ADD32ri8:
  case X86::ADD32ri_DB:
  case X86::ADD32ri8_DB:
    if (!MI.getOperand(2).isImm()) {
      // convertToThreeAddress will call getImm()
      // which requires isImm() to be true
      return nullptr;
    }
    break;
  case X86::SHL64ri:
  case X86::SHL32ri:
  case X86::INC64r:
  case X86::INC32r:
  case X86::DEC64r:
  case X86::DEC32r:
  case X86::ADD64rr:
  case X86::ADD64rr_DB:
  case X86::ADD32rr:
  case X86::ADD32rr_DB:
    // These instructions are all fine to convert.
    break;
  }
  MachineFunction::iterator MFI = MBB.getIterator();
  return TII->convertToThreeAddress(MFI, MI, nullptr);
}
FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
static bool isLEA(unsigned Opcode) {
  return Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
         Opcode == X86::LEA64_32r;
}
bool FixupLEAPass::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
  bool IsSlowLEA = ST.slowLEA();
  bool IsSlow3OpsLEA = ST.slow3OpsLEA();
  bool LEAUsesAG = ST.LEAusesAG();
  bool OptIncDec = !ST.slowIncDec() || MF.getFunction().hasOptSize();
  bool UseLEAForSP = ST.useLeaForSP();
  TSM.init(&ST);
  TII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  auto *MBFI = (PSI && PSI->hasProfileSummary())
                   ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()
                   : nullptr;
  LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
  for (MachineBasicBlock &MBB : MF) {
    // First pass. Try to remove or optimize existing LEAs.
    bool OptIncDecPerBB =
        OptIncDec || llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
    for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
      if (!isLEA(I->getOpcode()))
        continue;
      if (optTwoAddrLEA(I, MBB, OptIncDecPerBB, UseLEAForSP))
        continue;
      if (IsSlowLEA)
        processInstructionForSlowLEA(I, MBB);
      else if (IsSlow3OpsLEA)
        processInstrForSlow3OpLEA(I, MBB, OptIncDecPerBB);
    }
    // Second pass for creating LEAs. This may reverse some of the
    // transformations above.
    if (LEAUsesAG) {
      for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I)
        processInstruction(I, MBB);
    }
  }
  LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
  return true;
}
FixupLEAPass::RegUsageState
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
  RegUsageState RegUsage = RU_NotUsed;
  MachineInstr &MI = *I;
  for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
    MachineOperand &opnd = MI.getOperand(i);
    if (opnd.isReg() && opnd.getReg() == p.getReg()) {
      if (opnd.isDef())
        return RU_Write;
      RegUsage = RU_Read;
    }
  }
  return RegUsage;
}
/// getPreviousInstr - Given a reference to an instruction in a basic
/// block, return a reference to the previous instruction in the block,
/// wrapping around to the last instruction of the block if the block
/// branches to itself.
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
                                    MachineBasicBlock &MBB) {
  if (I == MBB.begin()) {
    if (MBB.isPredecessor(&MBB)) {
      I = --MBB.end();
      return true;
    } else
      return false;
  }
  --I;
  return true;
}
MachineBasicBlock::iterator
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
                              MachineBasicBlock &MBB) {
  int InstrDistance = 1;
  MachineBasicBlock::iterator CurInst;
  static const int INSTR_DISTANCE_THRESHOLD = 5;
  CurInst = I;
  bool Found;
  Found = getPreviousInstr(CurInst, MBB);
  while (Found && I != CurInst) {
    if (CurInst->isCall() || CurInst->isInlineAsm())
      break;
    if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
      break; // too far back to make a difference
    if (usesRegister(p, CurInst) == RU_Write) {
      return CurInst;
    }
    InstrDistance += TSM.computeInstrLatency(&*CurInst);
    Found = getPreviousInstr(CurInst, MBB);
  }
  return MachineBasicBlock::iterator();
}
static inline bool isInefficientLEAReg(unsigned Reg) {
  return Reg == X86::EBP || Reg == X86::RBP ||
         Reg == X86::R13D || Reg == X86::R13;
}
/// Returns true if this LEA uses base an index registers, and the base register
/// is known to be inefficient for the subtarget.
// TODO: use a variant scheduling class to model the latency profile
// of LEA instructions, and implement this logic as a scheduling predicate.
static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
                                            const MachineOperand &Index) {
  return Base.isReg() && isInefficientLEAReg(Base.getReg()) && Index.isReg() &&
         Index.getReg() != X86::NoRegister;
}
static inline bool hasLEAOffset(const MachineOperand &Offset) {
  return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
}
static inline unsigned getADDrrFromLEA(unsigned LEAOpcode) {
  switch (LEAOpcode) {
  default:
    llvm_unreachable("Unexpected LEA instruction");
  case X86::LEA32r:
  case X86::LEA64_32r:
    return X86::ADD32rr;
  case X86::LEA64r:
    return X86::ADD64rr;
  }
}
static inline unsigned getADDriFromLEA(unsigned LEAOpcode,
                                       const MachineOperand &Offset) {
  bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
  switch (LEAOpcode) {
  default:
    llvm_unreachable("Unexpected LEA instruction");
  case X86::LEA32r:
  case X86::LEA64_32r:
    return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
  case X86::LEA64r:
    return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
  }
}
static inline unsigned getINCDECFromLEA(unsigned LEAOpcode, bool IsINC) {
  switch (LEAOpcode) {
  default:
    llvm_unreachable("Unexpected LEA instruction");
  case X86::LEA32r:
  case X86::LEA64_32r:
    return IsINC ? X86::INC32r : X86::DEC32r;
  case X86::LEA64r:
    return IsINC ? X86::INC64r : X86::DEC64r;
  }
}
bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator &I,
                                 MachineBasicBlock &MBB, bool OptIncDec,
                                 bool UseLEAForSP) const {
  MachineInstr &MI = *I;
  const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
  const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
  const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
  const MachineOperand &Disp =    MI.getOperand(1 + X86::AddrDisp);
  const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
  if (Segment.getReg() != 0 || !Disp.isImm() || Scale.getImm() > 1 ||
      !TII->isSafeToClobberEFLAGS(MBB, I))
    return false;
  Register DestReg = MI.getOperand(0).getReg();
  Register BaseReg = Base.getReg();
  Register IndexReg = Index.getReg();
  // Don't change stack adjustment LEAs.
  if (UseLEAForSP && (DestReg == X86::ESP || DestReg == X86::RSP))
    return false;
  // LEA64_32 has 64-bit operands but 32-bit result.
  if (MI.getOpcode() == X86::LEA64_32r) {
    if (BaseReg != 0)
      BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
    if (IndexReg != 0)
      IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
  }
  MachineInstr *NewMI = nullptr;
  // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1
  // which can be turned into add %reg2, %reg1
  if (BaseReg != 0 && IndexReg != 0 && Disp.getImm() == 0 &&
      (DestReg == BaseReg || DestReg == IndexReg)) {
    unsigned NewOpcode = getADDrrFromLEA(MI.getOpcode());
    if (DestReg != BaseReg)
      std::swap(BaseReg, IndexReg);
    if (MI.getOpcode() == X86::LEA64_32r) {
      // TODO: Do we need the super register implicit use?
      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
        .addReg(BaseReg).addReg(IndexReg)
        .addReg(Base.getReg(), RegState::Implicit)
        .addReg(Index.getReg(), RegState::Implicit);
    } else {
      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
        .addReg(BaseReg).addReg(IndexReg);
    }
  } else if (DestReg == BaseReg && IndexReg == 0) {
    // This is an LEA with only a base register and a displacement,
    // We can use ADDri or INC/DEC.
    // Does this LEA have one these forms:
    // lea  %reg, 1(%reg)
    // lea  %reg, -1(%reg)
    if (OptIncDec && (Disp.getImm() == 1 || Disp.getImm() == -1)) {
      bool IsINC = Disp.getImm() == 1;
      unsigned NewOpcode = getINCDECFromLEA(MI.getOpcode(), IsINC);
      if (MI.getOpcode() == X86::LEA64_32r) {
        // TODO: Do we need the super register implicit use?
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
          .addReg(BaseReg).addReg(Base.getReg(), RegState::Implicit);
      } else {
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
          .addReg(BaseReg);
      }
    } else {
      unsigned NewOpcode = getADDriFromLEA(MI.getOpcode(), Disp);
      if (MI.getOpcode() == X86::LEA64_32r) {
        // TODO: Do we need the super register implicit use?
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
          .addReg(BaseReg).addImm(Disp.getImm())
          .addReg(Base.getReg(), RegState::Implicit);
      } else {
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
          .addReg(BaseReg).addImm(Disp.getImm());
      }
    }
  } else
    return false;
  MBB.erase(I);
  I = NewMI;
  return true;
}
void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
                                      MachineBasicBlock &MBB) {
  // Process a load, store, or LEA instruction.
  MachineInstr &MI = *I;
  const MCInstrDesc &Desc = MI.getDesc();
  int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
  if (AddrOffset >= 0) {
    AddrOffset += X86II::getOperandBias(Desc);
    MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
    if (p.isReg() && p.getReg() != X86::ESP) {
      seekLEAFixup(p, I, MBB);
    }
    MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
    if (q.isReg() && q.getReg() != X86::ESP) {
      seekLEAFixup(q, I, MBB);
    }
  }
}
void FixupLEAPass::seekLEAFixup(MachineOperand &p,
                                MachineBasicBlock::iterator &I,
                                MachineBasicBlock &MBB) {
  MachineBasicBlock::iterator MBI = searchBackwards(p, I, MBB);
  if (MBI != MachineBasicBlock::iterator()) {
    MachineInstr *NewMI = postRAConvertToLEA(MBB, MBI);
    if (NewMI) {
      ++NumLEAs;
      LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
      // now to replace with an equivalent LEA...
      LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
      MBB.erase(MBI);
      MachineBasicBlock::iterator J =
          static_cast<MachineBasicBlock::iterator>(NewMI);
      processInstruction(J, MBB);
    }
  }
}
void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
                                                MachineBasicBlock &MBB) {
  MachineInstr &MI = *I;
  const unsigned Opcode = MI.getOpcode();
  const MachineOperand &Dst =     MI.getOperand(0);
  const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
  const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
  const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
  const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp);
  const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
  if (Segment.getReg() != 0 || !Offset.isImm() ||
      !TII->isSafeToClobberEFLAGS(MBB, I))
    return;
  const Register DstR = Dst.getReg();
  const Register SrcR1 = Base.getReg();
  const Register SrcR2 = Index.getReg();
  if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
    return;
  if (Scale.getImm() > 1)
    return;
  LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
  LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
  MachineInstr *NewMI = nullptr;
  // Make ADD instruction for two registers writing to LEA's destination
  if (SrcR1 != 0 && SrcR2 != 0) {
    const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
    const MachineOperand &Src = SrcR1 == DstR ? Index : Base;
    NewMI =
        BuildMI(MBB, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
    LLVM_DEBUG(NewMI->dump(););
  }
  // Make ADD instruction for immediate
  if (Offset.getImm() != 0) {
    const MCInstrDesc &ADDri =
        TII->get(getADDriFromLEA(Opcode, Offset));
    const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index;
    NewMI = BuildMI(MBB, I, MI.getDebugLoc(), ADDri, DstR)
                .add(SrcR)
                .addImm(Offset.getImm());
    LLVM_DEBUG(NewMI->dump(););
  }
  if (NewMI) {
    MBB.erase(I);
    I = NewMI;
  }
}
void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
                                             MachineBasicBlock &MBB,
                                             bool OptIncDec) {
  MachineInstr &MI = *I;
  const unsigned LEAOpcode = MI.getOpcode();
  const MachineOperand &Dest =    MI.getOperand(0);
  const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
  const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
  const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
  const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp);
  const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
  if (!(TII->isThreeOperandsLEA(MI) || hasInefficientLEABaseReg(Base, Index)) ||
      !TII->isSafeToClobberEFLAGS(MBB, MI) ||
      Segment.getReg() != X86::NoRegister)
    return;
  Register DestReg = Dest.getReg();
  Register BaseReg = Base.getReg();
  Register IndexReg = Index.getReg();
  if (MI.getOpcode() == X86::LEA64_32r) {
    if (BaseReg != 0)
      BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
    if (IndexReg != 0)
      IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
  }
  bool IsScale1 = Scale.getImm() == 1;
  bool IsInefficientBase = isInefficientLEAReg(BaseReg);
  bool IsInefficientIndex = isInefficientLEAReg(IndexReg);
  // Skip these cases since it takes more than 2 instructions
  // to replace the LEA instruction.
  if (IsInefficientBase && DestReg == BaseReg && !IsScale1)
    return;
  LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
  LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
  MachineInstr *NewMI = nullptr;
  // First try to replace LEA with one or two (for the 3-op LEA case)
  // add instructions:
  // 1.lea (%base,%index,1), %base => add %index,%base
  // 2.lea (%base,%index,1), %index => add %base,%index
  if (IsScale1 && (DestReg == BaseReg || DestReg == IndexReg)) {
    unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
    if (DestReg != BaseReg)
      std::swap(BaseReg, IndexReg);
    if (MI.getOpcode() == X86::LEA64_32r) {
      // TODO: Do we need the super register implicit use?
      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                  .addReg(BaseReg)
                  .addReg(IndexReg)
                  .addReg(Base.getReg(), RegState::Implicit)
                  .addReg(Index.getReg(), RegState::Implicit);
    } else {
      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                  .addReg(BaseReg)
                  .addReg(IndexReg);
    }
  } else if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
    // If the base is inefficient try switching the index and base operands,
    // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
    // lea offset(%base,%index,scale),%dst =>
    // lea (%base,%index,scale); add offset,%dst
    NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
                .add(Dest)
                .add(IsInefficientBase ? Index : Base)
                .add(Scale)
                .add(IsInefficientBase ? Base : Index)
                .addImm(0)
                .add(Segment);
    LLVM_DEBUG(NewMI->dump(););
  }
  // If either replacement succeeded above, add the offset if needed, then
  // replace the instruction.
  if (NewMI) {
    // Create ADD instruction for the Offset in case of 3-Ops LEA.
    if (hasLEAOffset(Offset)) {
      if (OptIncDec && Offset.isImm() &&
          (Offset.getImm() == 1 || Offset.getImm() == -1)) {
        unsigned NewOpc =
            getINCDECFromLEA(MI.getOpcode(), Offset.getImm() == 1);
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                    .addReg(DestReg);
        LLVM_DEBUG(NewMI->dump(););
      } else {
        unsigned NewOpc = getADDriFromLEA(MI.getOpcode(), Offset);
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                    .addReg(DestReg)
                    .add(Offset);
        LLVM_DEBUG(NewMI->dump(););
      }
    }
    MBB.erase(I);
    I = NewMI;
    return;
  }
  // Handle the rest of the cases with inefficient base register:
  assert(DestReg != BaseReg && "DestReg == BaseReg should be handled already!");
  assert(IsInefficientBase && "efficient base should be handled already!");
  // FIXME: Handle LEA64_32r.
  if (LEAOpcode == X86::LEA64_32r)
    return;
  // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
  if (IsScale1 && !hasLEAOffset(Offset)) {
    bool BIK = Base.isKill() && BaseReg != IndexReg;
    TII->copyPhysReg(MBB, MI, MI.getDebugLoc(), DestReg, BaseReg, BIK);
    LLVM_DEBUG(MI.getPrevNode()->dump(););
    unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
    NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                .addReg(DestReg)
                .add(Index);
    LLVM_DEBUG(NewMI->dump(););
    MBB.erase(I);
    I = NewMI;
    return;
  }
  // lea offset(%base,%index,scale), %dst =>
  // lea offset( ,%index,scale), %dst; add %base,%dst
  NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
              .add(Dest)
              .addReg(0)
              .add(Scale)
              .add(Index)
              .add(Offset)
              .add(Segment);
  LLVM_DEBUG(NewMI->dump(););
  unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
  NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
              .addReg(DestReg)
              .add(Base);
  LLVM_DEBUG(NewMI->dump(););
  MBB.erase(I);
  I = NewMI;
}
 |