| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 
 | //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Provide a pass which mitigates speculative execution attacks which operate
/// by speculating incorrectly past some predicate (a type check, bounds check,
/// or other condition) to reach a load with invalid inputs and leak the data
/// accessed by that load using a side channel out of the speculative domain.
///
/// For details on the attacks, see the first variant in both the Project Zero
/// writeup and the Spectre paper:
/// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
/// https://spectreattack.com/spectre.pdf
///
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>
using namespace llvm;
#define PASS_KEY "x86-slh"
#define DEBUG_TYPE PASS_KEY
STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
STATISTIC(NumAddrRegsHardened,
          "Number of address mode used registers hardaned");
STATISTIC(NumPostLoadRegsHardened,
          "Number of post-load register values hardened");
STATISTIC(NumCallsOrJumpsHardened,
          "Number of calls or jumps requiring extra hardening");
STATISTIC(NumInstsInserted, "Number of instructions inserted");
STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
static cl::opt<bool> EnableSpeculativeLoadHardening(
    "x86-speculative-load-hardening",
    cl::desc("Force enable speculative load hardening"), cl::init(false),
    cl::Hidden);
static cl::opt<bool> HardenEdgesWithLFENCE(
    PASS_KEY "-lfence",
    cl::desc(
        "Use LFENCE along each conditional edge to harden against speculative "
        "loads rather than conditional movs and poisoned pointers."),
    cl::init(false), cl::Hidden);
static cl::opt<bool> EnablePostLoadHardening(
    PASS_KEY "-post-load",
    cl::desc("Harden the value loaded *after* it is loaded by "
             "flushing the loaded bits to 1. This is hard to do "
             "in general but can be done easily for GPRs."),
    cl::init(true), cl::Hidden);
static cl::opt<bool> FenceCallAndRet(
    PASS_KEY "-fence-call-and-ret",
    cl::desc("Use a full speculation fence to harden both call and ret edges "
             "rather than a lighter weight mitigation."),
    cl::init(false), cl::Hidden);
static cl::opt<bool> HardenInterprocedurally(
    PASS_KEY "-ip",
    cl::desc("Harden interprocedurally by passing our state in and out of "
             "functions in the high bits of the stack pointer."),
    cl::init(true), cl::Hidden);
static cl::opt<bool>
    HardenLoads(PASS_KEY "-loads",
                cl::desc("Sanitize loads from memory. When disable, no "
                         "significant security is provided."),
                cl::init(true), cl::Hidden);
static cl::opt<bool> HardenIndirectCallsAndJumps(
    PASS_KEY "-indirect",
    cl::desc("Harden indirect calls and jumps against using speculatively "
             "stored attacker controlled addresses. This is designed to "
             "mitigate Spectre v1.2 style attacks."),
    cl::init(true), cl::Hidden);
namespace {
class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
public:
  X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { }
  StringRef getPassName() const override {
    return "X86 speculative load hardening";
  }
  bool runOnMachineFunction(MachineFunction &MF) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  /// Pass identification, replacement for typeid.
  static char ID;
private:
  /// The information about a block's conditional terminators needed to trace
  /// our predicate state through the exiting edges.
  struct BlockCondInfo {
    MachineBasicBlock *MBB;
    // We mostly have one conditional branch, and in extremely rare cases have
    // two. Three and more are so rare as to be unimportant for compile time.
    SmallVector<MachineInstr *, 2> CondBrs;
    MachineInstr *UncondBr;
  };
  /// Manages the predicate state traced through the program.
  struct PredState {
    unsigned InitialReg = 0;
    unsigned PoisonReg = 0;
    const TargetRegisterClass *RC;
    MachineSSAUpdater SSA;
    PredState(MachineFunction &MF, const TargetRegisterClass *RC)
        : RC(RC), SSA(MF) {}
  };
  const X86Subtarget *Subtarget = nullptr;
  MachineRegisterInfo *MRI = nullptr;
  const X86InstrInfo *TII = nullptr;
  const TargetRegisterInfo *TRI = nullptr;
  Optional<PredState> PS;
  void hardenEdgesWithLFENCE(MachineFunction &MF);
  SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
  SmallVector<MachineInstr *, 16>
  tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
  void unfoldCallAndJumpLoads(MachineFunction &MF);
  SmallVector<MachineInstr *, 16>
  tracePredStateThroughIndirectBranches(MachineFunction &MF);
  void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
  unsigned saveEFLAGS(MachineBasicBlock &MBB,
                      MachineBasicBlock::iterator InsertPt, DebugLoc Loc);
  void restoreEFLAGS(MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
                     unsigned OFReg);
  void mergePredStateIntoSP(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
                            unsigned PredStateReg);
  unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator InsertPt,
                                  DebugLoc Loc);
  void
  hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
                 MachineOperand &IndexMO,
                 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
  MachineInstr *
  sinkPostLoadHardenedInst(MachineInstr &MI,
                           SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
  bool canHardenRegister(unsigned Reg);
  unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator InsertPt,
                                 DebugLoc Loc);
  unsigned hardenPostLoad(MachineInstr &MI);
  void hardenReturnInstr(MachineInstr &MI);
  void tracePredStateThroughCall(MachineInstr &MI);
  void hardenIndirectCallOrJumpInstr(
      MachineInstr &MI,
      SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
};
} // end anonymous namespace
char X86SpeculativeLoadHardeningPass::ID = 0;
void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  MachineFunctionPass::getAnalysisUsage(AU);
}
static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
                                    MachineBasicBlock &Succ, int SuccCount,
                                    MachineInstr *Br, MachineInstr *&UncondBr,
                                    const X86InstrInfo &TII) {
  assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
  MachineFunction &MF = *MBB.getParent();
  MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
  // We have to insert the new block immediately after the current one as we
  // don't know what layout-successor relationships the successor has and we
  // may not be able to (and generally don't want to) try to fix those up.
  MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
  // Update the branch instruction if necessary.
  if (Br) {
    assert(Br->getOperand(0).getMBB() == &Succ &&
           "Didn't start with the right target!");
    Br->getOperand(0).setMBB(&NewMBB);
    // If this successor was reached through a branch rather than fallthrough,
    // we might have *broken* fallthrough and so need to inject a new
    // unconditional branch.
    if (!UncondBr) {
      MachineBasicBlock &OldLayoutSucc =
          *std::next(MachineFunction::iterator(&NewMBB));
      assert(MBB.isSuccessor(&OldLayoutSucc) &&
             "Without an unconditional branch, the old layout successor should "
             "be an actual successor!");
      auto BrBuilder =
          BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
      // Update the unconditional branch now that we've added one.
      UncondBr = &*BrBuilder;
    }
    // Insert unconditional "jump Succ" instruction in the new block if
    // necessary.
    if (!NewMBB.isLayoutSuccessor(&Succ)) {
      SmallVector<MachineOperand, 4> Cond;
      TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
    }
  } else {
    assert(!UncondBr &&
           "Cannot have a branchless successor and an unconditional branch!");
    assert(NewMBB.isLayoutSuccessor(&Succ) &&
           "A non-branch successor must have been a layout successor before "
           "and now is a layout successor of the new block.");
  }
  // If this is the only edge to the successor, we can just replace it in the
  // CFG. Otherwise we need to add a new entry in the CFG for the new
  // successor.
  if (SuccCount == 1) {
    MBB.replaceSuccessor(&Succ, &NewMBB);
  } else {
    MBB.splitSuccessor(&Succ, &NewMBB);
  }
  // Hook up the edge from the new basic block to the old successor in the CFG.
  NewMBB.addSuccessor(&Succ);
  // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
  for (MachineInstr &MI : Succ) {
    if (!MI.isPHI())
      break;
    for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
         OpIdx += 2) {
      MachineOperand &OpV = MI.getOperand(OpIdx);
      MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
      assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
      if (OpMBB.getMBB() != &MBB)
        continue;
      // If this is the last edge to the succesor, just replace MBB in the PHI
      if (SuccCount == 1) {
        OpMBB.setMBB(&NewMBB);
        break;
      }
      // Otherwise, append a new pair of operands for the new incoming edge.
      MI.addOperand(MF, OpV);
      MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
      break;
    }
  }
  // Inherit live-ins from the successor
  for (auto &LI : Succ.liveins())
    NewMBB.addLiveIn(LI);
  LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
                    << Succ.getName() << "'.\n");
  return NewMBB;
}
/// Removing duplicate PHI operands to leave the PHI in a canonical and
/// predictable form.
///
/// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
/// isn't what you might expect. We may have multiple entries in PHI nodes for
/// a single predecessor. This makes CFG-updating extremely complex, so here we
/// simplify all PHI nodes to a model even simpler than the IR's model: exactly
/// one entry per predecessor, regardless of how many edges there are.
static void canonicalizePHIOperands(MachineFunction &MF) {
  SmallPtrSet<MachineBasicBlock *, 4> Preds;
  SmallVector<int, 4> DupIndices;
  for (auto &MBB : MF)
    for (auto &MI : MBB) {
      if (!MI.isPHI())
        break;
      // First we scan the operands of the PHI looking for duplicate entries
      // a particular predecessor. We retain the operand index of each duplicate
      // entry found.
      for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
           OpIdx += 2)
        if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
          DupIndices.push_back(OpIdx);
      // Now walk the duplicate indices, removing both the block and value. Note
      // that these are stored as a vector making this element-wise removal
      // :w
      // potentially quadratic.
      //
      // FIXME: It is really frustrating that we have to use a quadratic
      // removal algorithm here. There should be a better way, but the use-def
      // updates required make that impossible using the public API.
      //
      // Note that we have to process these backwards so that we don't
      // invalidate other indices with each removal.
      while (!DupIndices.empty()) {
        int OpIdx = DupIndices.pop_back_val();
        // Remove both the block and value operand, again in reverse order to
        // preserve indices.
        MI.RemoveOperand(OpIdx + 1);
        MI.RemoveOperand(OpIdx);
      }
      Preds.clear();
    }
}
/// Helper to scan a function for loads vulnerable to misspeculation that we
/// want to harden.
///
/// We use this to avoid making changes to functions where there is nothing we
/// need to do to harden against misspeculation.
static bool hasVulnerableLoad(MachineFunction &MF) {
  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      // Loads within this basic block after an LFENCE are not at risk of
      // speculatively executing with invalid predicates from prior control
      // flow. So break out of this block but continue scanning the function.
      if (MI.getOpcode() == X86::LFENCE)
        break;
      // Looking for loads only.
      if (!MI.mayLoad())
        continue;
      // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
      if (MI.getOpcode() == X86::MFENCE)
        continue;
      // We found a load.
      return true;
    }
  }
  // No loads found.
  return false;
}
bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
    MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
                    << " **********\n");
  // Only run if this pass is forced enabled or we detect the relevant function
  // attribute requesting SLH.
  if (!EnableSpeculativeLoadHardening &&
      !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
    return false;
  Subtarget = &MF.getSubtarget<X86Subtarget>();
  MRI = &MF.getRegInfo();
  TII = Subtarget->getInstrInfo();
  TRI = Subtarget->getRegisterInfo();
  // FIXME: Support for 32-bit.
  PS.emplace(MF, &X86::GR64_NOSPRegClass);
  if (MF.begin() == MF.end())
    // Nothing to do for a degenerate empty function...
    return false;
  // We support an alternative hardening technique based on a debug flag.
  if (HardenEdgesWithLFENCE) {
    hardenEdgesWithLFENCE(MF);
    return true;
  }
  // Create a dummy debug loc to use for all the generated code here.
  DebugLoc Loc;
  MachineBasicBlock &Entry = *MF.begin();
  auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
  // Do a quick scan to see if we have any checkable loads.
  bool HasVulnerableLoad = hasVulnerableLoad(MF);
  // See if we have any conditional branching blocks that we will need to trace
  // predicate state through.
  SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
  // If we have no interesting conditions or loads, nothing to do here.
  if (!HasVulnerableLoad && Infos.empty())
    return true;
  // The poison value is required to be an all-ones value for many aspects of
  // this mitigation.
  const int PoisonVal = -1;
  PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
  BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
      .addImm(PoisonVal);
  ++NumInstsInserted;
  // If we have loads being hardened and we've asked for call and ret edges to
  // get a full fence-based mitigation, inject that fence.
  if (HasVulnerableLoad && FenceCallAndRet) {
    // We need to insert an LFENCE at the start of the function to suspend any
    // incoming misspeculation from the caller. This helps two-fold: the caller
    // may not have been protected as this code has been, and this code gets to
    // not take any specific action to protect across calls.
    // FIXME: We could skip this for functions which unconditionally return
    // a constant.
    BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
    ++NumInstsInserted;
    ++NumLFENCEsInserted;
  }
  // If we guarded the entry with an LFENCE and have no conditionals to protect
  // in blocks, then we're done.
  if (FenceCallAndRet && Infos.empty())
    // We may have changed the function's code at this point to insert fences.
    return true;
  // For every basic block in the function which can b
  if (HardenInterprocedurally && !FenceCallAndRet) {
    // Set up the predicate state by extracting it from the incoming stack
    // pointer so we pick up any misspeculation in our caller.
    PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
  } else {
    // Otherwise, just build the predicate state itself by zeroing a register
    // as we don't need any initial state.
    PS->InitialReg = MRI->createVirtualRegister(PS->RC);
    Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
    auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
                         PredStateSubReg);
    ++NumInstsInserted;
    MachineOperand *ZeroEFLAGSDefOp =
        ZeroI->findRegisterDefOperand(X86::EFLAGS);
    assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
           "Must have an implicit def of EFLAGS!");
    ZeroEFLAGSDefOp->setIsDead(true);
    BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
            PS->InitialReg)
        .addImm(0)
        .addReg(PredStateSubReg)
        .addImm(X86::sub_32bit);
  }
  // We're going to need to trace predicate state throughout the function's
  // CFG. Prepare for this by setting up our initial state of PHIs with unique
  // predecessor entries and all the initial predicate state.
  canonicalizePHIOperands(MF);
  // Track the updated values in an SSA updater to rewrite into SSA form at the
  // end.
  PS->SSA.Initialize(PS->InitialReg);
  PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
  // Trace through the CFG.
  auto CMovs = tracePredStateThroughCFG(MF, Infos);
  // We may also enter basic blocks in this function via exception handling
  // control flow. Here, if we are hardening interprocedurally, we need to
  // re-capture the predicate state from the throwing code. In the Itanium ABI,
  // the throw will always look like a call to __cxa_throw and will have the
  // predicate state in the stack pointer, so extract fresh predicate state from
  // the stack pointer and make it available in SSA.
  // FIXME: Handle non-itanium ABI EH models.
  if (HardenInterprocedurally) {
    for (MachineBasicBlock &MBB : MF) {
      assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
      assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
      assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
      if (!MBB.isEHPad())
        continue;
      PS->SSA.AddAvailableValue(
          &MBB,
          extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
    }
  }
  if (HardenIndirectCallsAndJumps) {
    // If we are going to harden calls and jumps we need to unfold their memory
    // operands.
    unfoldCallAndJumpLoads(MF);
    // Then we trace predicate state through the indirect branches.
    auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF);
    CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end());
  }
  // Now that we have the predicate state available at the start of each block
  // in the CFG, trace it through each block, hardening vulnerable instructions
  // as we go.
  tracePredStateThroughBlocksAndHarden(MF);
  // Now rewrite all the uses of the pred state using the SSA updater to insert
  // PHIs connecting the state between blocks along the CFG edges.
  for (MachineInstr *CMovI : CMovs)
    for (MachineOperand &Op : CMovI->operands()) {
      if (!Op.isReg() || Op.getReg() != PS->InitialReg)
        continue;
      PS->SSA.RewriteUse(Op);
    }
  LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
             dbgs() << "\n"; MF.verify(this));
  return true;
}
/// Implements the naive hardening approach of putting an LFENCE after every
/// potentially mis-predicted control flow construct.
///
/// We include this as an alternative mostly for the purpose of comparison. The
/// performance impact of this is expected to be extremely severe and not
/// practical for any real-world users.
void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
    MachineFunction &MF) {
  // First, we scan the function looking for blocks that are reached along edges
  // that we might want to harden.
  SmallSetVector<MachineBasicBlock *, 8> Blocks;
  for (MachineBasicBlock &MBB : MF) {
    // If there are no or only one successor, nothing to do here.
    if (MBB.succ_size() <= 1)
      continue;
    // Skip blocks unless their terminators start with a branch. Other
    // terminators don't seem interesting for guarding against misspeculation.
    auto TermIt = MBB.getFirstTerminator();
    if (TermIt == MBB.end() || !TermIt->isBranch())
      continue;
    // Add all the non-EH-pad succossors to the blocks we want to harden. We
    // skip EH pads because there isn't really a condition of interest on
    // entering.
    for (MachineBasicBlock *SuccMBB : MBB.successors())
      if (!SuccMBB->isEHPad())
        Blocks.insert(SuccMBB);
  }
  for (MachineBasicBlock *MBB : Blocks) {
    auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
    BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
    ++NumInstsInserted;
    ++NumLFENCEsInserted;
  }
}
SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
  SmallVector<BlockCondInfo, 16> Infos;
  // Walk the function and build up a summary for each block's conditions that
  // we need to trace through.
  for (MachineBasicBlock &MBB : MF) {
    // If there are no or only one successor, nothing to do here.
    if (MBB.succ_size() <= 1)
      continue;
    // We want to reliably handle any conditional branch terminators in the
    // MBB, so we manually analyze the branch. We can handle all of the
    // permutations here, including ones that analyze branch cannot.
    //
    // The approach is to walk backwards across the terminators, resetting at
    // any unconditional non-indirect branch, and track all conditional edges
    // to basic blocks as well as the fallthrough or unconditional successor
    // edge. For each conditional edge, we track the target and the opposite
    // condition code in order to inject a "no-op" cmov into that successor
    // that will harden the predicate. For the fallthrough/unconditional
    // edge, we inject a separate cmov for each conditional branch with
    // matching condition codes. This effectively implements an "and" of the
    // condition flags, even if there isn't a single condition flag that would
    // directly implement that. We don't bother trying to optimize either of
    // these cases because if such an optimization is possible, LLVM should
    // have optimized the conditional *branches* in that way already to reduce
    // instruction count. This late, we simply assume the minimal number of
    // branch instructions is being emitted and use that to guide our cmov
    // insertion.
    BlockCondInfo Info = {&MBB, {}, nullptr};
    // Now walk backwards through the terminators and build up successors they
    // reach and the conditions.
    for (MachineInstr &MI : llvm::reverse(MBB)) {
      // Once we've handled all the terminators, we're done.
      if (!MI.isTerminator())
        break;
      // If we see a non-branch terminator, we can't handle anything so bail.
      if (!MI.isBranch()) {
        Info.CondBrs.clear();
        break;
      }
      // If we see an unconditional branch, reset our state, clear any
      // fallthrough, and set this is the "else" successor.
      if (MI.getOpcode() == X86::JMP_1) {
        Info.CondBrs.clear();
        Info.UncondBr = &MI;
        continue;
      }
      // If we get an invalid condition, we have an indirect branch or some
      // other unanalyzable "fallthrough" case. We model this as a nullptr for
      // the destination so we can still guard any conditional successors.
      // Consider code sequences like:
      // ```
      //   jCC L1
      //   jmpq *%rax
      // ```
      // We still want to harden the edge to `L1`.
      if (X86::getCondFromBranch(MI) == X86::COND_INVALID) {
        Info.CondBrs.clear();
        Info.UncondBr = &MI;
        continue;
      }
      // We have a vanilla conditional branch, add it to our list.
      Info.CondBrs.push_back(&MI);
    }
    if (Info.CondBrs.empty()) {
      ++NumBranchesUntraced;
      LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
                 MBB.dump());
      continue;
    }
    Infos.push_back(Info);
  }
  return Infos;
}
/// Trace the predicate state through the CFG, instrumenting each conditional
/// branch such that misspeculation through an edge will poison the predicate
/// state.
///
/// Returns the list of inserted CMov instructions so that they can have their
/// uses of the predicate state rewritten into proper SSA form once it is
/// complete.
SmallVector<MachineInstr *, 16>
X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
    MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
  // Collect the inserted cmov instructions so we can rewrite their uses of the
  // predicate state into SSA form.
  SmallVector<MachineInstr *, 16> CMovs;
  // Now walk all of the basic blocks looking for ones that end in conditional
  // jumps where we need to update this register along each edge.
  for (const BlockCondInfo &Info : Infos) {
    MachineBasicBlock &MBB = *Info.MBB;
    const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
    MachineInstr *UncondBr = Info.UncondBr;
    LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
                      << "\n");
    ++NumCondBranchesTraced;
    // Compute the non-conditional successor as either the target of any
    // unconditional branch or the layout successor.
    MachineBasicBlock *UncondSucc =
        UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
                        ? UncondBr->getOperand(0).getMBB()
                        : nullptr)
                 : &*std::next(MachineFunction::iterator(&MBB));
    // Count how many edges there are to any given successor.
    SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
    if (UncondSucc)
      ++SuccCounts[UncondSucc];
    for (auto *CondBr : CondBrs)
      ++SuccCounts[CondBr->getOperand(0).getMBB()];
    // A lambda to insert cmov instructions into a block checking all of the
    // condition codes in a sequence.
    auto BuildCheckingBlockForSuccAndConds =
        [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
            MachineInstr *Br, MachineInstr *&UncondBr,
            ArrayRef<X86::CondCode> Conds) {
          // First, we split the edge to insert the checking block into a safe
          // location.
          auto &CheckingMBB =
              (SuccCount == 1 && Succ.pred_size() == 1)
                  ? Succ
                  : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
          bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
          if (!LiveEFLAGS)
            CheckingMBB.addLiveIn(X86::EFLAGS);
          // Now insert the cmovs to implement the checks.
          auto InsertPt = CheckingMBB.begin();
          assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
                 "Should never have a PHI in the initial checking block as it "
                 "always has a single predecessor!");
          // We will wire each cmov to each other, but need to start with the
          // incoming pred state.
          unsigned CurStateReg = PS->InitialReg;
          for (X86::CondCode Cond : Conds) {
            int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
            auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
            Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
            // Note that we intentionally use an empty debug location so that
            // this picks up the preceding location.
            auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
                                 TII->get(CMovOp), UpdatedStateReg)
                             .addReg(CurStateReg)
                             .addReg(PS->PoisonReg)
                             .addImm(Cond);
            // If this is the last cmov and the EFLAGS weren't originally
            // live-in, mark them as killed.
            if (!LiveEFLAGS && Cond == Conds.back())
              CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
            ++NumInstsInserted;
            LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
                       dbgs() << "\n");
            // The first one of the cmovs will be using the top level
            // `PredStateReg` and need to get rewritten into SSA form.
            if (CurStateReg == PS->InitialReg)
              CMovs.push_back(&*CMovI);
            // The next cmov should start from this one's def.
            CurStateReg = UpdatedStateReg;
          }
          // And put the last one into the available values for SSA form of our
          // predicate state.
          PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
        };
    std::vector<X86::CondCode> UncondCodeSeq;
    for (auto *CondBr : CondBrs) {
      MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
      int &SuccCount = SuccCounts[&Succ];
      X86::CondCode Cond = X86::getCondFromBranch(*CondBr);
      X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
      UncondCodeSeq.push_back(Cond);
      BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
                                        {InvCond});
      // Decrement the successor count now that we've split one of the edges.
      // We need to keep the count of edges to the successor accurate in order
      // to know above when to *replace* the successor in the CFG vs. just
      // adding the new successor.
      --SuccCount;
    }
    // Since we may have split edges and changed the number of successors,
    // normalize the probabilities. This avoids doing it each time we split an
    // edge.
    MBB.normalizeSuccProbs();
    // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
    // need to intersect the other condition codes. We can do this by just
    // doing a cmov for each one.
    if (!UncondSucc)
      // If we have no fallthrough to protect (perhaps it is an indirect jump?)
      // just skip this and continue.
      continue;
    assert(SuccCounts[UncondSucc] == 1 &&
           "We should never have more than one edge to the unconditional "
           "successor at this point because every other edge must have been "
           "split above!");
    // Sort and unique the codes to minimize them.
    llvm::sort(UncondCodeSeq);
    UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
                        UncondCodeSeq.end());
    // Build a checking version of the successor.
    BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
                                      UncondBr, UncondBr, UncondCodeSeq);
  }
  return CMovs;
}
/// Compute the register class for the unfolded load.
///
/// FIXME: This should probably live in X86InstrInfo, potentially by adding
/// a way to unfold into a newly created vreg rather than requiring a register
/// input.
static const TargetRegisterClass *
getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
                           unsigned Opcode) {
  unsigned Index;
  unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
      Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
  const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
  return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
}
void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
    MachineFunction &MF) {
  for (MachineBasicBlock &MBB : MF)
    for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) {
      // Grab a reference and increment the iterator so we can remove this
      // instruction if needed without disturbing the iteration.
      MachineInstr &MI = *MII++;
      // Must either be a call or a branch.
      if (!MI.isCall() && !MI.isBranch())
        continue;
      // We only care about loading variants of these instructions.
      if (!MI.mayLoad())
        continue;
      switch (MI.getOpcode()) {
      default: {
        LLVM_DEBUG(
            dbgs() << "ERROR: Found an unexpected loading branch or call "
                      "instruction:\n";
            MI.dump(); dbgs() << "\n");
        report_fatal_error("Unexpected loading branch or call!");
      }
      case X86::FARCALL16m:
      case X86::FARCALL32m:
      case X86::FARCALL64m:
      case X86::FARJMP16m:
      case X86::FARJMP32m:
      case X86::FARJMP64m:
        // We cannot mitigate far jumps or calls, but we also don't expect them
        // to be vulnerable to Spectre v1.2 style attacks.
        continue;
      case X86::CALL16m:
      case X86::CALL16m_NT:
      case X86::CALL32m:
      case X86::CALL32m_NT:
      case X86::CALL64m:
      case X86::CALL64m_NT:
      case X86::JMP16m:
      case X86::JMP16m_NT:
      case X86::JMP32m:
      case X86::JMP32m_NT:
      case X86::JMP64m:
      case X86::JMP64m_NT:
      case X86::TAILJMPm64:
      case X86::TAILJMPm64_REX:
      case X86::TAILJMPm:
      case X86::TCRETURNmi64:
      case X86::TCRETURNmi: {
        // Use the generic unfold logic now that we know we're dealing with
        // expected instructions.
        // FIXME: We don't have test coverage for all of these!
        auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
        if (!UnfoldedRC) {
          LLVM_DEBUG(dbgs()
                         << "ERROR: Unable to unfold load from instruction:\n";
                     MI.dump(); dbgs() << "\n");
          report_fatal_error("Unable to unfold load!");
        }
        Register Reg = MRI->createVirtualRegister(UnfoldedRC);
        SmallVector<MachineInstr *, 2> NewMIs;
        // If we were able to compute an unfolded reg class, any failure here
        // is just a programming error so just assert.
        bool Unfolded =
            TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
                                     /*UnfoldStore*/ false, NewMIs);
        (void)Unfolded;
        assert(Unfolded &&
               "Computed unfolded register class but failed to unfold");
        // Now stitch the new instructions into place and erase the old one.
        for (auto *NewMI : NewMIs)
          MBB.insert(MI.getIterator(), NewMI);
        // Update the call site info.
        if (MI.isCandidateForCallSiteEntry())
          MF.eraseCallSiteInfo(&MI);
        MI.eraseFromParent();
        LLVM_DEBUG({
          dbgs() << "Unfolded load successfully into:\n";
          for (auto *NewMI : NewMIs) {
            NewMI->dump();
            dbgs() << "\n";
          }
        });
        continue;
      }
      }
      llvm_unreachable("Escaped switch with default!");
    }
}
/// Trace the predicate state through indirect branches, instrumenting them to
/// poison the state if a target is reached that does not match the expected
/// target.
///
/// This is designed to mitigate Spectre variant 1 attacks where an indirect
/// branch is trained to predict a particular target and then mispredicts that
/// target in a way that can leak data. Despite using an indirect branch, this
/// is really a variant 1 style attack: it does not steer execution to an
/// arbitrary or attacker controlled address, and it does not require any
/// special code executing next to the victim. This attack can also be mitigated
/// through retpolines, but those require either replacing indirect branches
/// with conditional direct branches or lowering them through a device that
/// blocks speculation. This mitigation can replace these retpoline-style
/// mitigations for jump tables and other indirect branches within a function
/// when variant 2 isn't a risk while allowing limited speculation. Indirect
/// calls, however, cannot be mitigated through this technique without changing
/// the ABI in a fundamental way.
SmallVector<MachineInstr *, 16>
X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
    MachineFunction &MF) {
  // We use the SSAUpdater to insert PHI nodes for the target addresses of
  // indirect branches. We don't actually need the full power of the SSA updater
  // in this particular case as we always have immediately available values, but
  // this avoids us having to re-implement the PHI construction logic.
  MachineSSAUpdater TargetAddrSSA(MF);
  TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass));
  // Track which blocks were terminated with an indirect branch.
  SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs;
  // We need to know what blocks end up reached via indirect branches. We
  // expect this to be a subset of those whose address is taken and so track it
  // directly via the CFG.
  SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs;
  // Walk all the blocks which end in an indirect branch and make the
  // target address available.
  for (MachineBasicBlock &MBB : MF) {
    // Find the last terminator.
    auto MII = MBB.instr_rbegin();
    while (MII != MBB.instr_rend() && MII->isDebugInstr())
      ++MII;
    if (MII == MBB.instr_rend())
      continue;
    MachineInstr &TI = *MII;
    if (!TI.isTerminator() || !TI.isBranch())
      // No terminator or non-branch terminator.
      continue;
    unsigned TargetReg;
    switch (TI.getOpcode()) {
    default:
      // Direct branch or conditional branch (leading to fallthrough).
      continue;
    case X86::FARJMP16m:
    case X86::FARJMP32m:
    case X86::FARJMP64m:
      // We cannot mitigate far jumps or calls, but we also don't expect them
      // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
      continue;
    case X86::JMP16m:
    case X86::JMP16m_NT:
    case X86::JMP32m:
    case X86::JMP32m_NT:
    case X86::JMP64m:
    case X86::JMP64m_NT:
      // Mostly as documentation.
      report_fatal_error("Memory operand jumps should have been unfolded!");
    case X86::JMP16r:
      report_fatal_error(
          "Support for 16-bit indirect branches is not implemented.");
    case X86::JMP32r:
      report_fatal_error(
          "Support for 32-bit indirect branches is not implemented.");
    case X86::JMP64r:
      TargetReg = TI.getOperand(0).getReg();
    }
    // We have definitely found an indirect  branch. Verify that there are no
    // preceding conditional branches as we don't yet support that.
    if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) {
          return !OtherTI.isDebugInstr() && &OtherTI != &TI;
        })) {
      LLVM_DEBUG({
        dbgs() << "ERROR: Found other terminators in a block with an indirect "
                  "branch! This is not yet supported! Terminator sequence:\n";
        for (MachineInstr &MI : MBB.terminators()) {
          MI.dump();
          dbgs() << '\n';
        }
      });
      report_fatal_error("Unimplemented terminator sequence!");
    }
    // Make the target register an available value for this block.
    TargetAddrSSA.AddAvailableValue(&MBB, TargetReg);
    IndirectTerminatedMBBs.insert(&MBB);
    // Add all the successors to our target candidates.
    for (MachineBasicBlock *Succ : MBB.successors())
      IndirectTargetMBBs.insert(Succ);
  }
  // Keep track of the cmov instructions we insert so we can return them.
  SmallVector<MachineInstr *, 16> CMovs;
  // If we didn't find any indirect branches with targets, nothing to do here.
  if (IndirectTargetMBBs.empty())
    return CMovs;
  // We found indirect branches and targets that need to be instrumented to
  // harden loads within them. Walk the blocks of the function (to get a stable
  // ordering) and instrument each target of an indirect branch.
  for (MachineBasicBlock &MBB : MF) {
    // Skip the blocks that aren't candidate targets.
    if (!IndirectTargetMBBs.count(&MBB))
      continue;
    // We don't expect EH pads to ever be reached via an indirect branch. If
    // this is desired for some reason, we could simply skip them here rather
    // than asserting.
    assert(!MBB.isEHPad() &&
           "Unexpected EH pad as target of an indirect branch!");
    // We should never end up threading EFLAGS into a block to harden
    // conditional jumps as there would be an additional successor via the
    // indirect branch. As a consequence, all such edges would be split before
    // reaching here, and the inserted block will handle the EFLAGS-based
    // hardening.
    assert(!MBB.isLiveIn(X86::EFLAGS) &&
           "Cannot check within a block that already has live-in EFLAGS!");
    // We can't handle having non-indirect edges into this block unless this is
    // the only successor and we can synthesize the necessary target address.
    for (MachineBasicBlock *Pred : MBB.predecessors()) {
      // If we've already handled this by extracting the target directly,
      // nothing to do.
      if (IndirectTerminatedMBBs.count(Pred))
        continue;
      // Otherwise, we have to be the only successor. We generally expect this
      // to be true as conditional branches should have had a critical edge
      // split already. We don't however need to worry about EH pad successors
      // as they'll happily ignore the target and their hardening strategy is
      // resilient to all ways in which they could be reached speculatively.
      if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) {
            return Succ->isEHPad() || Succ == &MBB;
          })) {
        LLVM_DEBUG({
          dbgs() << "ERROR: Found conditional entry to target of indirect "
                    "branch!\n";
          Pred->dump();
          MBB.dump();
        });
        report_fatal_error("Cannot harden a conditional entry to a target of "
                           "an indirect branch!");
      }
      // Now we need to compute the address of this block and install it as a
      // synthetic target in the predecessor. We do this at the bottom of the
      // predecessor.
      auto InsertPt = Pred->getFirstTerminator();
      Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass);
      if (MF.getTarget().getCodeModel() == CodeModel::Small &&
          !Subtarget->isPositionIndependent()) {
        // Directly materialize it into an immediate.
        auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(),
                             TII->get(X86::MOV64ri32), TargetReg)
                         .addMBB(&MBB);
        ++NumInstsInserted;
        (void)AddrI;
        LLVM_DEBUG(dbgs() << "  Inserting mov: "; AddrI->dump();
                   dbgs() << "\n");
      } else {
        auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r),
                             TargetReg)
                         .addReg(/*Base*/ X86::RIP)
                         .addImm(/*Scale*/ 1)
                         .addReg(/*Index*/ 0)
                         .addMBB(&MBB)
                         .addReg(/*Segment*/ 0);
        ++NumInstsInserted;
        (void)AddrI;
        LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump();
                   dbgs() << "\n");
      }
      // And make this available.
      TargetAddrSSA.AddAvailableValue(Pred, TargetReg);
    }
    // Materialize the needed SSA value of the target. Note that we need the
    // middle of the block as this block might at the bottom have an indirect
    // branch back to itself. We can do this here because at this point, every
    // predecessor of this block has an available value. This is basically just
    // automating the construction of a PHI node for this target.
    unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB);
    // Insert a comparison of the incoming target register with this block's
    // address. This also requires us to mark the block as having its address
    // taken explicitly.
    MBB.setHasAddressTaken();
    auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
    if (MF.getTarget().getCodeModel() == CodeModel::Small &&
        !Subtarget->isPositionIndependent()) {
      // Check directly against a relocated immediate when we can.
      auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32))
                        .addReg(TargetReg, RegState::Kill)
                        .addMBB(&MBB);
      ++NumInstsInserted;
      (void)CheckI;
      LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
    } else {
      // Otherwise compute the address into a register first.
      Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass);
      auto AddrI =
          BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg)
              .addReg(/*Base*/ X86::RIP)
              .addImm(/*Scale*/ 1)
              .addReg(/*Index*/ 0)
              .addMBB(&MBB)
              .addReg(/*Segment*/ 0);
      ++NumInstsInserted;
      (void)AddrI;
      LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump(); dbgs() << "\n");
      auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr))
                        .addReg(TargetReg, RegState::Kill)
                        .addReg(AddrReg, RegState::Kill);
      ++NumInstsInserted;
      (void)CheckI;
      LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
    }
    // Now cmov over the predicate if the comparison wasn't equal.
    int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
    auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
    Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
    auto CMovI =
        BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg)
            .addReg(PS->InitialReg)
            .addReg(PS->PoisonReg)
            .addImm(X86::COND_NE);
    CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
    ++NumInstsInserted;
    LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
    CMovs.push_back(&*CMovI);
    // And put the new value into the available values for SSA form of our
    // predicate state.
    PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
  }
  // Return all the newly inserted cmov instructions of the predicate state.
  return CMovs;
}
// Returns true if the MI has EFLAGS as a register def operand and it's live,
// otherwise it returns false
static bool isEFLAGSDefLive(const MachineInstr &MI) {
  if (const MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
    return !DefOp->isDead();
  }
  return false;
}
static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                         const TargetRegisterInfo &TRI) {
  // Check if EFLAGS are alive by seeing if there is a def of them or they
  // live-in, and then seeing if that def is in turn used.
  for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
    if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
      // If the def is dead, then EFLAGS is not live.
      if (DefOp->isDead())
        return false;
      // Otherwise we've def'ed it, and it is live.
      return true;
    }
    // While at this instruction, also check if we use and kill EFLAGS
    // which means it isn't live.
    if (MI.killsRegister(X86::EFLAGS, &TRI))
      return false;
  }
  // If we didn't find anything conclusive (neither definitely alive or
  // definitely dead) return whether it lives into the block.
  return MBB.isLiveIn(X86::EFLAGS);
}
/// Trace the predicate state through each of the blocks in the function,
/// hardening everything necessary along the way.
///
/// We call this routine once the initial predicate state has been established
/// for each basic block in the function in the SSA updater. This routine traces
/// it through the instructions within each basic block, and for non-returning
/// blocks informs the SSA updater about the final state that lives out of the
/// block. Along the way, it hardens any vulnerable instruction using the
/// currently valid predicate state. We have to do these two things together
/// because the SSA updater only works across blocks. Within a block, we track
/// the current predicate state directly and update it as it changes.
///
/// This operates in two passes over each block. First, we analyze the loads in
/// the block to determine which strategy will be used to harden them: hardening
/// the address or hardening the loaded value when loaded into a register
/// amenable to hardening. We have to process these first because the two
/// strategies may interact -- later hardening may change what strategy we wish
/// to use. We also will analyze data dependencies between loads and avoid
/// hardening those loads that are data dependent on a load with a hardened
/// address. We also skip hardening loads already behind an LFENCE as that is
/// sufficient to harden them against misspeculation.
///
/// Second, we actively trace the predicate state through the block, applying
/// the hardening steps we determined necessary in the first pass as we go.
///
/// These two passes are applied to each basic block. We operate one block at a
/// time to simplify reasoning about reachability and sequencing.
void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
    MachineFunction &MF) {
  SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
  SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
  SmallSet<unsigned, 16> HardenedAddrRegs;
  SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
  // Track the set of load-dependent registers through the basic block. Because
  // the values of these registers have an existing data dependency on a loaded
  // value which we would have checked, we can omit any checks on them.
  SparseBitVector<> LoadDepRegs;
  for (MachineBasicBlock &MBB : MF) {
    // The first pass over the block: collect all the loads which can have their
    // loaded value hardened and all the loads that instead need their address
    // hardened. During this walk we propagate load dependence for address
    // hardened loads and also look for LFENCE to stop hardening wherever
    // possible. When deciding whether or not to harden the loaded value or not,
    // we check to see if any registers used in the address will have been
    // hardened at this point and if so, harden any remaining address registers
    // as that often successfully re-uses hardened addresses and minimizes
    // instructions.
    //
    // FIXME: We should consider an aggressive mode where we continue to keep as
    // many loads value hardened even when some address register hardening would
    // be free (due to reuse).
    //
    // Note that we only need this pass if we are actually hardening loads.
    if (HardenLoads)
      for (MachineInstr &MI : MBB) {
        // We naively assume that all def'ed registers of an instruction have
        // a data dependency on all of their operands.
        // FIXME: Do a more careful analysis of x86 to build a conservative
        // model here.
        if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
              return Op.isReg() && LoadDepRegs.test(Op.getReg());
            }))
          for (MachineOperand &Def : MI.defs())
            if (Def.isReg())
              LoadDepRegs.set(Def.getReg());
        // Both Intel and AMD are guiding that they will change the semantics of
        // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
        // no more need to guard things in this block.
        if (MI.getOpcode() == X86::LFENCE)
          break;
        // If this instruction cannot load, nothing to do.
        if (!MI.mayLoad())
          continue;
        // Some instructions which "load" are trivially safe or unimportant.
        if (MI.getOpcode() == X86::MFENCE)
          continue;
        // Extract the memory operand information about this instruction.
        // FIXME: This doesn't handle loading pseudo instructions which we often
        // could handle with similarly generic logic. We probably need to add an
        // MI-layer routine similar to the MC-layer one we use here which maps
        // pseudos much like this maps real instructions.
        const MCInstrDesc &Desc = MI.getDesc();
        int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
        if (MemRefBeginIdx < 0) {
          LLVM_DEBUG(dbgs()
                         << "WARNING: unable to harden loading instruction: ";
                     MI.dump());
          continue;
        }
        MemRefBeginIdx += X86II::getOperandBias(Desc);
        MachineOperand &BaseMO =
            MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
        MachineOperand &IndexMO =
            MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
        // If we have at least one (non-frame-index, non-RIP) register operand,
        // and neither operand is load-dependent, we need to check the load.
        unsigned BaseReg = 0, IndexReg = 0;
        if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
            BaseMO.getReg() != X86::NoRegister)
          BaseReg = BaseMO.getReg();
        if (IndexMO.getReg() != X86::NoRegister)
          IndexReg = IndexMO.getReg();
        if (!BaseReg && !IndexReg)
          // No register operands!
          continue;
        // If any register operand is dependent, this load is dependent and we
        // needn't check it.
        // FIXME: Is this true in the case where we are hardening loads after
        // they complete? Unclear, need to investigate.
        if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
            (IndexReg && LoadDepRegs.test(IndexReg)))
          continue;
        // If post-load hardening is enabled, this load is compatible with
        // post-load hardening, and we aren't already going to harden one of the
        // address registers, queue it up to be hardened post-load. Notably,
        // even once hardened this won't introduce a useful dependency that
        // could prune out subsequent loads.
        if (EnablePostLoadHardening && X86InstrInfo::isDataInvariantLoad(MI) &&
            !isEFLAGSDefLive(MI) && MI.getDesc().getNumDefs() == 1 &&
            MI.getOperand(0).isReg() &&
            canHardenRegister(MI.getOperand(0).getReg()) &&
            !HardenedAddrRegs.count(BaseReg) &&
            !HardenedAddrRegs.count(IndexReg)) {
          HardenPostLoad.insert(&MI);
          HardenedAddrRegs.insert(MI.getOperand(0).getReg());
          continue;
        }
        // Record this instruction for address hardening and record its register
        // operands as being address-hardened.
        HardenLoadAddr.insert(&MI);
        if (BaseReg)
          HardenedAddrRegs.insert(BaseReg);
        if (IndexReg)
          HardenedAddrRegs.insert(IndexReg);
        for (MachineOperand &Def : MI.defs())
          if (Def.isReg())
            LoadDepRegs.set(Def.getReg());
      }
    // Now re-walk the instructions in the basic block, and apply whichever
    // hardening strategy we have elected. Note that we do this in a second
    // pass specifically so that we have the complete set of instructions for
    // which we will do post-load hardening and can defer it in certain
    // circumstances.
    for (MachineInstr &MI : MBB) {
      if (HardenLoads) {
        // We cannot both require hardening the def of a load and its address.
        assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
               "Requested to harden both the address and def of a load!");
        // Check if this is a load whose address needs to be hardened.
        if (HardenLoadAddr.erase(&MI)) {
          const MCInstrDesc &Desc = MI.getDesc();
          int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
          assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
          MemRefBeginIdx += X86II::getOperandBias(Desc);
          MachineOperand &BaseMO =
              MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
          MachineOperand &IndexMO =
              MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
          hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
          continue;
        }
        // Test if this instruction is one of our post load instructions (and
        // remove it from the set if so).
        if (HardenPostLoad.erase(&MI)) {
          assert(!MI.isCall() && "Must not try to post-load harden a call!");
          // If this is a data-invariant load and there is no EFLAGS
          // interference, we want to try and sink any hardening as far as
          // possible.
          if (X86InstrInfo::isDataInvariantLoad(MI) && !isEFLAGSDefLive(MI)) {
            // Sink the instruction we'll need to harden as far as we can down
            // the graph.
            MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
            // If we managed to sink this instruction, update everything so we
            // harden that instruction when we reach it in the instruction
            // sequence.
            if (SunkMI != &MI) {
              // If in sinking there was no instruction needing to be hardened,
              // we're done.
              if (!SunkMI)
                continue;
              // Otherwise, add this to the set of defs we harden.
              HardenPostLoad.insert(SunkMI);
              continue;
            }
          }
          unsigned HardenedReg = hardenPostLoad(MI);
          // Mark the resulting hardened register as such so we don't re-harden.
          AddrRegToHardenedReg[HardenedReg] = HardenedReg;
          continue;
        }
        // Check for an indirect call or branch that may need its input hardened
        // even if we couldn't find the specific load used, or were able to
        // avoid hardening it for some reason. Note that here we cannot break
        // out afterward as we may still need to handle any call aspect of this
        // instruction.
        if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
          hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
      }
      // After we finish hardening loads we handle interprocedural hardening if
      // enabled and relevant for this instruction.
      if (!HardenInterprocedurally)
        continue;
      if (!MI.isCall() && !MI.isReturn())
        continue;
      // If this is a direct return (IE, not a tail call) just directly harden
      // it.
      if (MI.isReturn() && !MI.isCall()) {
        hardenReturnInstr(MI);
        continue;
      }
      // Otherwise we have a call. We need to handle transferring the predicate
      // state into a call and recovering it after the call returns (unless this
      // is a tail call).
      assert(MI.isCall() && "Should only reach here for calls!");
      tracePredStateThroughCall(MI);
    }
    HardenPostLoad.clear();
    HardenLoadAddr.clear();
    HardenedAddrRegs.clear();
    AddrRegToHardenedReg.clear();
    // Currently, we only track data-dependent loads within a basic block.
    // FIXME: We should see if this is necessary or if we could be more
    // aggressive here without opening up attack avenues.
    LoadDepRegs.clear();
  }
}
/// Save EFLAGS into the returned GPR. This can in turn be restored with
/// `restoreEFLAGS`.
///
/// Note that LLVM can only lower very simple patterns of saved and restored
/// EFLAGS registers. The restore should always be within the same basic block
/// as the save so that no PHI nodes are inserted.
unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
    DebugLoc Loc) {
  // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
  // what instruction selection does.
  Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
  // We directly copy the FLAGS register and rely on later lowering to clean
  // this up into the appropriate setCC instructions.
  BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
  ++NumInstsInserted;
  return Reg;
}
/// Restore EFLAGS from the provided GPR. This should be produced by
/// `saveEFLAGS`.
///
/// This must be done within the same basic block as the save in order to
/// reliably lower.
void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
    unsigned Reg) {
  BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
  ++NumInstsInserted;
}
/// Takes the current predicate state (in a register) and merges it into the
/// stack pointer. The state is essentially a single bit, but we merge this in
/// a way that won't form non-canonical pointers and also will be preserved
/// across normal stack adjustments.
void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
    unsigned PredStateReg) {
  Register TmpReg = MRI->createVirtualRegister(PS->RC);
  // FIXME: This hard codes a shift distance based on the number of bits needed
  // to stay canonical on 64-bit. We should compute this somehow and support
  // 32-bit as part of that.
  auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
                    .addReg(PredStateReg, RegState::Kill)
                    .addImm(47);
  ShiftI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
  auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
                 .addReg(X86::RSP)
                 .addReg(TmpReg, RegState::Kill);
  OrI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
}
/// Extracts the predicate state stored in the high bits of the stack pointer.
unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
    DebugLoc Loc) {
  Register PredStateReg = MRI->createVirtualRegister(PS->RC);
  Register TmpReg = MRI->createVirtualRegister(PS->RC);
  // We know that the stack pointer will have any preserved predicate state in
  // its high bit. We just want to smear this across the other bits. Turns out,
  // this is exactly what an arithmetic right shift does.
  BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
      .addReg(X86::RSP);
  auto ShiftI =
      BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
          .addReg(TmpReg, RegState::Kill)
          .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
  ShiftI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
  return PredStateReg;
}
void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
    MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
    SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc Loc = MI.getDebugLoc();
  // Check if EFLAGS are alive by seeing if there is a def of them or they
  // live-in, and then seeing if that def is in turn used.
  bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
  SmallVector<MachineOperand *, 2> HardenOpRegs;
  if (BaseMO.isFI()) {
    // A frame index is never a dynamically controllable load, so only
    // harden it if we're covering fixed address loads as well.
    LLVM_DEBUG(
        dbgs() << "  Skipping hardening base of explicit stack frame load: ";
        MI.dump(); dbgs() << "\n");
  } else if (BaseMO.getReg() == X86::RSP) {
    // Some idempotent atomic operations are lowered directly to a locked
    // OR with 0 to the top of stack(or slightly offset from top) which uses an
    // explicit RSP register as the base.
    assert(IndexMO.getReg() == X86::NoRegister &&
           "Explicit RSP access with dynamic index!");
    LLVM_DEBUG(
        dbgs() << "  Cannot harden base of explicit RSP offset in a load!");
  } else if (BaseMO.getReg() == X86::RIP ||
             BaseMO.getReg() == X86::NoRegister) {
    // For both RIP-relative addressed loads or absolute loads, we cannot
    // meaningfully harden them because the address being loaded has no
    // dynamic component.
    //
    // FIXME: When using a segment base (like TLS does) we end up with the
    // dynamic address being the base plus -1 because we can't mutate the
    // segment register here. This allows the signed 32-bit offset to point at
    // valid segment-relative addresses and load them successfully.
    LLVM_DEBUG(
        dbgs() << "  Cannot harden base of "
               << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
               << " address in a load!");
  } else {
    assert(BaseMO.isReg() &&
           "Only allowed to have a frame index or register base.");
    HardenOpRegs.push_back(&BaseMO);
  }
  if (IndexMO.getReg() != X86::NoRegister &&
      (HardenOpRegs.empty() ||
       HardenOpRegs.front()->getReg() != IndexMO.getReg()))
    HardenOpRegs.push_back(&IndexMO);
  assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
         "Should have exactly one or two registers to harden!");
  assert((HardenOpRegs.size() == 1 ||
          HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
         "Should not have two of the same registers!");
  // Remove any registers that have alreaded been checked.
  llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
    // See if this operand's register has already been checked.
    auto It = AddrRegToHardenedReg.find(Op->getReg());
    if (It == AddrRegToHardenedReg.end())
      // Not checked, so retain this one.
      return false;
    // Otherwise, we can directly update this operand and remove it.
    Op->setReg(It->second);
    return true;
  });
  // If there are none left, we're done.
  if (HardenOpRegs.empty())
    return;
  // Compute the current predicate state.
  unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
  auto InsertPt = MI.getIterator();
  // If EFLAGS are live and we don't have access to instructions that avoid
  // clobbering EFLAGS we need to save and restore them. This in turn makes
  // the EFLAGS no longer live.
  unsigned FlagsReg = 0;
  if (EFLAGSLive && !Subtarget->hasBMI2()) {
    EFLAGSLive = false;
    FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
  }
  for (MachineOperand *Op : HardenOpRegs) {
    Register OpReg = Op->getReg();
    auto *OpRC = MRI->getRegClass(OpReg);
    Register TmpReg = MRI->createVirtualRegister(OpRC);
    // If this is a vector register, we'll need somewhat custom logic to handle
    // hardening it.
    if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
                                 OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
      assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
      bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
      // Move our state into a vector register.
      // FIXME: We could skip this at the cost of longer encodings with AVX-512
      // but that doesn't seem likely worth it.
      Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
      auto MovI =
          BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
              .addReg(StateReg);
      (void)MovI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");
      // Broadcast it across the vector register.
      Register VBStateReg = MRI->createVirtualRegister(OpRC);
      auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
                                TII->get(Is128Bit ? X86::VPBROADCASTQrr
                                                  : X86::VPBROADCASTQYrr),
                                VBStateReg)
                            .addReg(VStateReg);
      (void)BroadcastI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
                 dbgs() << "\n");
      // Merge our potential poison state into the value with a vector or.
      auto OrI =
          BuildMI(MBB, InsertPt, Loc,
                  TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
              .addReg(VBStateReg)
              .addReg(OpReg);
      (void)OrI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
    } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
               OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
               OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
      assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
      bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
      bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
      if (Is128Bit || Is256Bit)
        assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
      // Broadcast our state into a vector register.
      Register VStateReg = MRI->createVirtualRegister(OpRC);
      unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128rr
                                      : Is256Bit ? X86::VPBROADCASTQrZ256rr
                                                 : X86::VPBROADCASTQrZrr;
      auto BroadcastI =
          BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
              .addReg(StateReg);
      (void)BroadcastI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
                 dbgs() << "\n");
      // Merge our potential poison state into the value with a vector or.
      unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
                               : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
      auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
                     .addReg(VStateReg)
                     .addReg(OpReg);
      (void)OrI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
    } else {
      // FIXME: Need to support GR32 here for 32-bit code.
      assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
             "Not a supported register class for address hardening!");
      if (!EFLAGSLive) {
        // Merge our potential poison state into the value with an or.
        auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
                       .addReg(StateReg)
                       .addReg(OpReg);
        OrI->addRegisterDead(X86::EFLAGS, TRI);
        ++NumInstsInserted;
        LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
      } else {
        // We need to avoid touching EFLAGS so shift out all but the least
        // significant bit using the instruction that doesn't update flags.
        auto ShiftI =
            BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
                .addReg(OpReg)
                .addReg(StateReg);
        (void)ShiftI;
        ++NumInstsInserted;
        LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
                   dbgs() << "\n");
      }
    }
    // Record this register as checked and update the operand.
    assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
           "Should not have checked this register yet!");
    AddrRegToHardenedReg[Op->getReg()] = TmpReg;
    Op->setReg(TmpReg);
    ++NumAddrRegsHardened;
  }
  // And restore the flags if needed.
  if (FlagsReg)
    restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
}
MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
    MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
  assert(X86InstrInfo::isDataInvariantLoad(InitialMI) &&
         "Cannot get here with a non-invariant load!");
  assert(!isEFLAGSDefLive(InitialMI) &&
         "Cannot get here with a data invariant load "
         "that interferes with EFLAGS!");
  // See if we can sink hardening the loaded value.
  auto SinkCheckToSingleUse =
      [&](MachineInstr &MI) -> Optional<MachineInstr *> {
    Register DefReg = MI.getOperand(0).getReg();
    // We need to find a single use which we can sink the check. We can
    // primarily do this because many uses may already end up checked on their
    // own.
    MachineInstr *SingleUseMI = nullptr;
    for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
      // If we're already going to harden this use, it is data invariant, it
      // does not interfere with EFLAGS, and within our block.
      if (HardenedInstrs.count(&UseMI)) {
        if (!X86InstrInfo::isDataInvariantLoad(UseMI) || isEFLAGSDefLive(UseMI)) {
          // If we've already decided to harden a non-load, we must have sunk
          // some other post-load hardened instruction to it and it must itself
          // be data-invariant.
          assert(X86InstrInfo::isDataInvariant(UseMI) &&
                 "Data variant instruction being hardened!");
          continue;
        }
        // Otherwise, this is a load and the load component can't be data
        // invariant so check how this register is being used.
        const MCInstrDesc &Desc = UseMI.getDesc();
        int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
        assert(MemRefBeginIdx >= 0 &&
               "Should always have mem references here!");
        MemRefBeginIdx += X86II::getOperandBias(Desc);
        MachineOperand &BaseMO =
            UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
        MachineOperand &IndexMO =
            UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
        if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
            (IndexMO.isReg() && IndexMO.getReg() == DefReg))
          // The load uses the register as part of its address making it not
          // invariant.
          return {};
        continue;
      }
      if (SingleUseMI)
        // We already have a single use, this would make two. Bail.
        return {};
      // If this single use isn't data invariant, isn't in this block, or has
      // interfering EFLAGS, we can't sink the hardening to it.
      if (!X86InstrInfo::isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent() ||
          isEFLAGSDefLive(UseMI))
        return {};
      // If this instruction defines multiple registers bail as we won't harden
      // all of them.
      if (UseMI.getDesc().getNumDefs() > 1)
        return {};
      // If this register isn't a virtual register we can't walk uses of sanely,
      // just bail. Also check that its register class is one of the ones we
      // can harden.
      Register UseDefReg = UseMI.getOperand(0).getReg();
      if (!Register::isVirtualRegister(UseDefReg) ||
          !canHardenRegister(UseDefReg))
        return {};
      SingleUseMI = &UseMI;
    }
    // If SingleUseMI is still null, there is no use that needs its own
    // checking. Otherwise, it is the single use that needs checking.
    return {SingleUseMI};
  };
  MachineInstr *MI = &InitialMI;
  while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
    // Update which MI we're checking now.
    MI = *SingleUse;
    if (!MI)
      break;
  }
  return MI;
}
bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) {
  auto *RC = MRI->getRegClass(Reg);
  int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
  if (RegBytes > 8)
    // We don't support post-load hardening of vectors.
    return false;
  unsigned RegIdx = Log2_32(RegBytes);
  assert(RegIdx < 4 && "Unsupported register size");
  // If this register class is explicitly constrained to a class that doesn't
  // require REX prefix, we may not be able to satisfy that constraint when
  // emitting the hardening instructions, so bail out here.
  // FIXME: This seems like a pretty lame hack. The way this comes up is when we
  // end up both with a NOREX and REX-only register as operands to the hardening
  // instructions. It would be better to fix that code to handle this situation
  // rather than hack around it in this way.
  const TargetRegisterClass *NOREXRegClasses[] = {
      &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
      &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
  if (RC == NOREXRegClasses[RegIdx])
    return false;
  const TargetRegisterClass *GPRRegClasses[] = {
      &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
      &X86::GR64RegClass};
  return RC->hasSuperClassEq(GPRRegClasses[RegIdx]);
}
/// Harden a value in a register.
///
/// This is the low-level logic to fully harden a value sitting in a register
/// against leaking during speculative execution.
///
/// Unlike hardening an address that is used by a load, this routine is required
/// to hide *all* incoming bits in the register.
///
/// `Reg` must be a virtual register. Currently, it is required to be a GPR no
/// larger than the predicate state register. FIXME: We should support vector
/// registers here by broadcasting the predicate state.
///
/// The new, hardened virtual register is returned. It will have the same
/// register class as `Reg`.
unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
    unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
    DebugLoc Loc) {
  assert(canHardenRegister(Reg) && "Cannot harden this register!");
  assert(Register::isVirtualRegister(Reg) && "Cannot harden a physical register!");
  auto *RC = MRI->getRegClass(Reg);
  int Bytes = TRI->getRegSizeInBits(*RC) / 8;
  unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
  // FIXME: Need to teach this about 32-bit mode.
  if (Bytes != 8) {
    unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
    unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
    Register NarrowStateReg = MRI->createVirtualRegister(RC);
    BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
        .addReg(StateReg, 0, SubRegImm);
    StateReg = NarrowStateReg;
  }
  unsigned FlagsReg = 0;
  if (isEFLAGSLive(MBB, InsertPt, *TRI))
    FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
  Register NewReg = MRI->createVirtualRegister(RC);
  unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
  unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
  auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
                 .addReg(StateReg)
                 .addReg(Reg);
  OrI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
  LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
  if (FlagsReg)
    restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
  return NewReg;
}
/// Harden a load by hardening the loaded value in the defined register.
///
/// We can harden a non-leaking load into a register without touching the
/// address by just hiding all of the loaded bits during misspeculation. We use
/// an `or` instruction to do this because we set up our poison value as all
/// ones. And the goal is just for the loaded bits to not be exposed to
/// execution and coercing them to one is sufficient.
///
/// Returns the newly hardened register.
unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc Loc = MI.getDebugLoc();
  auto &DefOp = MI.getOperand(0);
  Register OldDefReg = DefOp.getReg();
  auto *DefRC = MRI->getRegClass(OldDefReg);
  // Because we want to completely replace the uses of this def'ed value with
  // the hardened value, create a dedicated new register that will only be used
  // to communicate the unhardened value to the hardening.
  Register UnhardenedReg = MRI->createVirtualRegister(DefRC);
  DefOp.setReg(UnhardenedReg);
  // Now harden this register's value, getting a hardened reg that is safe to
  // use. Note that we insert the instructions to compute this *after* the
  // defining instruction, not before it.
  unsigned HardenedReg = hardenValueInRegister(
      UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
  // Finally, replace the old register (which now only has the uses of the
  // original def) with the hardened register.
  MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
  ++NumPostLoadRegsHardened;
  return HardenedReg;
}
/// Harden a return instruction.
///
/// Returns implicitly perform a load which we need to harden. Without hardening
/// this load, an attacker my speculatively write over the return address to
/// steer speculation of the return to an attacker controlled address. This is
/// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
/// this paper:
/// https://people.csail.mit.edu/vlk/spectre11.pdf
///
/// We can harden this by introducing an LFENCE that will delay any load of the
/// return address until prior instructions have retired (and thus are not being
/// speculated), or we can harden the address used by the implicit load: the
/// stack pointer.
///
/// If we are not using an LFENCE, hardening the stack pointer has an additional
/// benefit: it allows us to pass the predicate state accumulated in this
/// function back to the caller. In the absence of a BCBS attack on the return,
/// the caller will typically be resumed and speculatively executed due to the
/// Return Stack Buffer (RSB) prediction which is very accurate and has a high
/// priority. It is possible that some code from the caller will be executed
/// speculatively even during a BCBS-attacked return until the steering takes
/// effect. Whenever this happens, the caller can recover the (poisoned)
/// predicate state from the stack pointer and continue to harden loads.
void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc Loc = MI.getDebugLoc();
  auto InsertPt = MI.getIterator();
  if (FenceCallAndRet)
    // No need to fence here as we'll fence at the return site itself. That
    // handles more cases than we can handle here.
    return;
  // Take our predicate state, shift it to the high 17 bits (so that we keep
  // pointers canonical) and merge it into RSP. This will allow the caller to
  // extract it when we return (speculatively).
  mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
}
/// Trace the predicate state through a call.
///
/// There are several layers of this needed to handle the full complexity of
/// calls.
///
/// First, we need to send the predicate state into the called function. We do
/// this by merging it into the high bits of the stack pointer.
///
/// For tail calls, this is all we need to do.
///
/// For calls where we might return and resume the control flow, we need to
/// extract the predicate state from the high bits of the stack pointer after
/// control returns from the called function.
///
/// We also need to verify that we intended to return to this location in the
/// code. An attacker might arrange for the processor to mispredict the return
/// to this valid but incorrect return address in the program rather than the
/// correct one. See the paper on this attack, called "ret2spec" by the
/// researchers, here:
/// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
///
/// The way we verify that we returned to the correct location is by preserving
/// the expected return address across the call. One technique involves taking
/// advantage of the red-zone to load the return address from `8(%rsp)` where it
/// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
/// directly save the address into a register that will be preserved across the
/// call. We compare this intended return address against the address
/// immediately following the call (the observed return address). If these
/// mismatch, we have detected misspeculation and can poison our predicate
/// state.
void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
    MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  auto InsertPt = MI.getIterator();
  DebugLoc Loc = MI.getDebugLoc();
  if (FenceCallAndRet) {
    if (MI.isReturn())
      // Tail call, we don't return to this function.
      // FIXME: We should also handle noreturn calls.
      return;
    // We don't need to fence before the call because the function should fence
    // in its entry. However, we do need to fence after the call returns.
    // Fencing before the return doesn't correctly handle cases where the return
    // itself is mispredicted.
    BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE));
    ++NumInstsInserted;
    ++NumLFENCEsInserted;
    return;
  }
  // First, we transfer the predicate state into the called function by merging
  // it into the stack pointer. This will kill the current def of the state.
  unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
  mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
  // If this call is also a return, it is a tail call and we don't need anything
  // else to handle it so just return. Also, if there are no further
  // instructions and no successors, this call does not return so we can also
  // bail.
  if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty()))
    return;
  // Create a symbol to track the return address and attach it to the call
  // machine instruction. We will lower extra symbols attached to call
  // instructions as label immediately following the call.
  MCSymbol *RetSymbol =
      MF.getContext().createTempSymbol("slh_ret_addr",
                                       /*AlwaysAddSuffix*/ true);
  MI.setPostInstrSymbol(MF, RetSymbol);
  const TargetRegisterClass *AddrRC = &X86::GR64RegClass;
  unsigned ExpectedRetAddrReg = 0;
  // If we have no red zones or if the function returns twice (possibly without
  // using the `ret` instruction) like setjmp, we need to save the expected
  // return address prior to the call.
  if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) ||
      MF.exposesReturnsTwice()) {
    // If we don't have red zones, we need to compute the expected return
    // address prior to the call and store it in a register that lives across
    // the call.
    //
    // In some ways, this is doubly satisfying as a mitigation because it will
    // also successfully detect stack smashing bugs in some cases (typically,
    // when a callee-saved register is used and the callee doesn't push it onto
    // the stack). But that isn't our primary goal, so we only use it as
    // a fallback.
    //
    // FIXME: It isn't clear that this is reliable in the face of
    // rematerialization in the register allocator. We somehow need to force
    // that to not occur for this particular instruction, and instead to spill
    // or otherwise preserve the value computed *prior* to the call.
    //
    // FIXME: It is even less clear why MachineCSE can't just fold this when we
    // end up having to use identical instructions both before and after the
    // call to feed the comparison.
    ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
    if (MF.getTarget().getCodeModel() == CodeModel::Small &&
        !Subtarget->isPositionIndependent()) {
      BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg)
          .addSym(RetSymbol);
    } else {
      BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg)
          .addReg(/*Base*/ X86::RIP)
          .addImm(/*Scale*/ 1)
          .addReg(/*Index*/ 0)
          .addSym(RetSymbol)
          .addReg(/*Segment*/ 0);
    }
  }
  // Step past the call to handle when it returns.
  ++InsertPt;
  // If we didn't pre-compute the expected return address into a register, then
  // red zones are enabled and the return address is still available on the
  // stack immediately after the call. As the very first instruction, we load it
  // into a register.
  if (!ExpectedRetAddrReg) {
    ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
    BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg)
        .addReg(/*Base*/ X86::RSP)
        .addImm(/*Scale*/ 1)
        .addReg(/*Index*/ 0)
        .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
                                     // the return address is 8-bytes past it.
        .addReg(/*Segment*/ 0);
  }
  // Now we extract the callee's predicate state from the stack pointer.
  unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
  // Test the expected return address against our actual address. If we can
  // form this basic block's address as an immediate, this is easy. Otherwise
  // we compute it.
  if (MF.getTarget().getCodeModel() == CodeModel::Small &&
      !Subtarget->isPositionIndependent()) {
    // FIXME: Could we fold this with the load? It would require careful EFLAGS
    // management.
    BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32))
        .addReg(ExpectedRetAddrReg, RegState::Kill)
        .addSym(RetSymbol);
  } else {
    Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC);
    BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg)
        .addReg(/*Base*/ X86::RIP)
        .addImm(/*Scale*/ 1)
        .addReg(/*Index*/ 0)
        .addSym(RetSymbol)
        .addReg(/*Segment*/ 0);
    BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr))
        .addReg(ExpectedRetAddrReg, RegState::Kill)
        .addReg(ActualRetAddrReg, RegState::Kill);
  }
  // Now conditionally update the predicate state we just extracted if we ended
  // up at a different return address than expected.
  int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
  auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
  Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
  auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg)
                   .addReg(NewStateReg, RegState::Kill)
                   .addReg(PS->PoisonReg)
                   .addImm(X86::COND_NE);
  CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
  ++NumInstsInserted;
  LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
  PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
}
/// An attacker may speculatively store over a value that is then speculatively
/// loaded and used as the target of an indirect call or jump instruction. This
/// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
/// in this paper:
/// https://people.csail.mit.edu/vlk/spectre11.pdf
///
/// When this happens, the speculative execution of the call or jump will end up
/// being steered to this attacker controlled address. While most such loads
/// will be adequately hardened already, we want to ensure that they are
/// definitively treated as needing post-load hardening. While address hardening
/// is sufficient to prevent secret data from leaking to the attacker, it may
/// not be sufficient to prevent an attacker from steering speculative
/// execution. We forcibly unfolded all relevant loads above and so will always
/// have an opportunity to post-load harden here, we just need to scan for cases
/// not already flagged and add them.
void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
    MachineInstr &MI,
    SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
  switch (MI.getOpcode()) {
  case X86::FARCALL16m:
  case X86::FARCALL32m:
  case X86::FARCALL64m:
  case X86::FARJMP16m:
  case X86::FARJMP32m:
  case X86::FARJMP64m:
    // We don't need to harden either far calls or far jumps as they are
    // safe from Spectre.
    return;
  default:
    break;
  }
  // We should never see a loading instruction at this point, as those should
  // have been unfolded.
  assert(!MI.mayLoad() && "Found a lingering loading instruction!");
  // If the first operand isn't a register, this is a branch or call
  // instruction with an immediate operand which doesn't need to be hardened.
  if (!MI.getOperand(0).isReg())
    return;
  // For all of these, the target register is the first operand of the
  // instruction.
  auto &TargetOp = MI.getOperand(0);
  Register OldTargetReg = TargetOp.getReg();
  // Try to lookup a hardened version of this register. We retain a reference
  // here as we want to update the map to track any newly computed hardened
  // register.
  unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
  // If we don't have a hardened register yet, compute one. Otherwise, just use
  // the already hardened register.
  //
  // FIXME: It is a little suspect that we use partially hardened registers that
  // only feed addresses. The complexity of partial hardening with SHRX
  // continues to pile up. Should definitively measure its value and consider
  // eliminating it.
  if (!HardenedTargetReg)
    HardenedTargetReg = hardenValueInRegister(
        OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
  // Set the target operand to the hardened register.
  TargetOp.setReg(HardenedTargetReg);
  ++NumCallsOrJumpsHardened;
}
INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,
                      "X86 speculative load hardener", false, false)
INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,
                    "X86 speculative load hardener", false, false)
FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
  return new X86SpeculativeLoadHardeningPass();
}
 |