1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
|
//===--- SemanticHighlighting.cpp - ------------------------- ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SemanticHighlighting.h"
#include "FindTarget.h"
#include "HeuristicResolver.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "SourceCode.h"
#include "support/Logger.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Base64.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
namespace clang {
namespace clangd {
namespace {
/// Some names are not written in the source code and cannot be highlighted,
/// e.g. anonymous classes. This function detects those cases.
bool canHighlightName(DeclarationName Name) {
switch (Name.getNameKind()) {
case DeclarationName::Identifier: {
auto *II = Name.getAsIdentifierInfo();
return II && !II->getName().empty();
}
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
return true;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
// Multi-arg selectors need special handling, and we handle 0/1 arg
// selectors there too.
return false;
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXDeductionGuideName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
return false;
}
llvm_unreachable("invalid name kind");
}
llvm::Optional<HighlightingKind> kindForType(const Type *TP,
const HeuristicResolver *Resolver);
llvm::Optional<HighlightingKind>
kindForDecl(const NamedDecl *D, const HeuristicResolver *Resolver) {
if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
if (auto *Target = USD->getTargetDecl())
D = Target;
}
if (auto *TD = dyn_cast<TemplateDecl>(D)) {
if (auto *Templated = TD->getTemplatedDecl())
D = Templated;
}
if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
// We try to highlight typedefs as their underlying type.
if (auto K =
kindForType(TD->getUnderlyingType().getTypePtrOrNull(), Resolver))
return K;
// And fallback to a generic kind if this fails.
return HighlightingKind::Typedef;
}
// We highlight class decls, constructor decls and destructor decls as
// `Class` type. The destructor decls are handled in `VisitTagTypeLoc` (we
// will visit a TypeLoc where the underlying Type is a CXXRecordDecl).
if (auto *RD = llvm::dyn_cast<RecordDecl>(D)) {
// We don't want to highlight lambdas like classes.
if (RD->isLambda())
return llvm::None;
return HighlightingKind::Class;
}
if (isa<ClassTemplateDecl, RecordDecl, CXXConstructorDecl, ObjCInterfaceDecl,
ObjCImplementationDecl>(D))
return HighlightingKind::Class;
if (isa<ObjCProtocolDecl>(D))
return HighlightingKind::Interface;
if (isa<ObjCCategoryDecl>(D))
return HighlightingKind::Namespace;
if (auto *MD = dyn_cast<CXXMethodDecl>(D))
return MD->isStatic() ? HighlightingKind::StaticMethod
: HighlightingKind::Method;
if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
return OMD->isClassMethod() ? HighlightingKind::StaticMethod
: HighlightingKind::Method;
if (isa<FieldDecl, ObjCPropertyDecl>(D))
return HighlightingKind::Field;
if (isa<EnumDecl>(D))
return HighlightingKind::Enum;
if (isa<EnumConstantDecl>(D))
return HighlightingKind::EnumConstant;
if (isa<ParmVarDecl>(D))
return HighlightingKind::Parameter;
if (auto *VD = dyn_cast<VarDecl>(D)) {
if (isa<ImplicitParamDecl>(VD)) // e.g. ObjC Self
return llvm::None;
return VD->isStaticDataMember()
? HighlightingKind::StaticField
: VD->isLocalVarDecl() ? HighlightingKind::LocalVariable
: HighlightingKind::Variable;
}
if (const auto *BD = dyn_cast<BindingDecl>(D))
return BD->getDeclContext()->isFunctionOrMethod()
? HighlightingKind::LocalVariable
: HighlightingKind::Variable;
if (isa<FunctionDecl>(D))
return HighlightingKind::Function;
if (isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D) ||
isa<UsingDirectiveDecl>(D))
return HighlightingKind::Namespace;
if (isa<TemplateTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
isa<NonTypeTemplateParmDecl>(D))
return HighlightingKind::TemplateParameter;
if (isa<ConceptDecl>(D))
return HighlightingKind::Concept;
if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(D)) {
auto Targets = Resolver->resolveUsingValueDecl(UUVD);
if (!Targets.empty()) {
return kindForDecl(Targets[0], Resolver);
}
return HighlightingKind::Unknown;
}
return llvm::None;
}
llvm::Optional<HighlightingKind>
kindForType(const Type *TP, const HeuristicResolver *Resolver) {
if (!TP)
return llvm::None;
if (TP->isBuiltinType()) // Builtins are special, they do not have decls.
return HighlightingKind::Primitive;
if (auto *TD = dyn_cast<TemplateTypeParmType>(TP))
return kindForDecl(TD->getDecl(), Resolver);
if (isa<ObjCObjectPointerType>(TP))
return HighlightingKind::Class;
if (auto *TD = TP->getAsTagDecl())
return kindForDecl(TD, Resolver);
return llvm::None;
}
// Whether T is const in a loose sense - is a variable with this type readonly?
bool isConst(QualType T) {
if (T.isNull() || T->isDependentType())
return false;
T = T.getNonReferenceType();
if (T.isConstQualified())
return true;
if (const auto *AT = T->getAsArrayTypeUnsafe())
return isConst(AT->getElementType());
if (isConst(T->getPointeeType()))
return true;
return false;
}
// Whether D is const in a loose sense (should it be highlighted as such?)
// FIXME: This is separate from whether *a particular usage* can mutate D.
// We may want V in V.size() to be readonly even if V is mutable.
bool isConst(const Decl *D) {
if (llvm::isa<EnumConstantDecl>(D) || llvm::isa<NonTypeTemplateParmDecl>(D))
return true;
if (llvm::isa<FieldDecl>(D) || llvm::isa<VarDecl>(D) ||
llvm::isa<MSPropertyDecl>(D) || llvm::isa<BindingDecl>(D)) {
if (isConst(llvm::cast<ValueDecl>(D)->getType()))
return true;
}
if (const auto *OCPD = llvm::dyn_cast<ObjCPropertyDecl>(D)) {
if (OCPD->isReadOnly())
return true;
}
if (const auto *MPD = llvm::dyn_cast<MSPropertyDecl>(D)) {
if (!MPD->hasSetter())
return true;
}
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D)) {
if (CMD->isConst())
return true;
}
return false;
}
// "Static" means many things in C++, only some get the "static" modifier.
//
// Meanings that do:
// - Members associated with the class rather than the instance.
// This is what 'static' most often means across languages.
// - static local variables
// These are similarly "detached from their context" by the static keyword.
// In practice, these are rarely used inside classes, reducing confusion.
//
// Meanings that don't:
// - Namespace-scoped variables, which have static storage class.
// This is implicit, so the keyword "static" isn't so strongly associated.
// If we want a modifier for these, "global scope" is probably the concept.
// - Namespace-scoped variables/functions explicitly marked "static".
// There the keyword changes *linkage* , which is a totally different concept.
// If we want to model this, "file scope" would be a nice modifier.
//
// This is confusing, and maybe we should use another name, but because "static"
// is a standard LSP modifier, having one with that name has advantages.
bool isStatic(const Decl *D) {
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D))
return CMD->isStatic();
if (const VarDecl *VD = llvm::dyn_cast<VarDecl>(D))
return VD->isStaticDataMember() || VD->isStaticLocal();
if (const auto *OPD = llvm::dyn_cast<ObjCPropertyDecl>(D))
return OPD->isClassProperty();
if (const auto *OMD = llvm::dyn_cast<ObjCMethodDecl>(D))
return OMD->isClassMethod();
return false;
}
bool isAbstract(const Decl *D) {
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D))
return CMD->isPure();
if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(D))
return CRD->hasDefinition() && CRD->isAbstract();
return false;
}
bool isDependent(const Decl *D) {
if (isa<UnresolvedUsingValueDecl>(D))
return true;
return false;
}
/// Returns true if `Decl` is considered to be from a default/system library.
/// This currently checks the systemness of the file by include type, although
/// different heuristics may be used in the future (e.g. sysroot paths).
bool isDefaultLibrary(const Decl *D) {
SourceLocation Loc = D->getLocation();
if (!Loc.isValid())
return false;
return D->getASTContext().getSourceManager().isInSystemHeader(Loc);
}
bool isDefaultLibrary(const Type *T) {
if (!T)
return false;
const Type *Underlying = T->getPointeeOrArrayElementType();
if (Underlying->isBuiltinType())
return true;
if (auto *TD = dyn_cast<TemplateTypeParmType>(Underlying))
return isDefaultLibrary(TD->getDecl());
if (auto *TD = Underlying->getAsTagDecl())
return isDefaultLibrary(TD);
return false;
}
// For a macro usage `DUMP(foo)`, we want:
// - DUMP --> "macro"
// - foo --> "variable".
SourceLocation getHighlightableSpellingToken(SourceLocation L,
const SourceManager &SM) {
if (L.isFileID())
return SM.isWrittenInMainFile(L) ? L : SourceLocation{};
// Tokens expanded from the macro body contribute no highlightings.
if (!SM.isMacroArgExpansion(L))
return {};
// Tokens expanded from macro args are potentially highlightable.
return getHighlightableSpellingToken(SM.getImmediateSpellingLoc(L), SM);
}
unsigned evaluateHighlightPriority(const HighlightingToken &Tok) {
enum HighlightPriority { Dependent = 0, Resolved = 1 };
return (Tok.Modifiers & (1 << uint32_t(HighlightingModifier::DependentName)))
? Dependent
: Resolved;
}
// Sometimes we get multiple tokens at the same location:
//
// - findExplicitReferences() returns a heuristic result for a dependent name
// (e.g. Method) and CollectExtraHighlighting returning a fallback dependent
// highlighting (e.g. Unknown+Dependent).
// - macro arguments are expanded multiple times and have different roles
// - broken code recovery produces several AST nodes at the same location
//
// We should either resolve these to a single token, or drop them all.
// Our heuristics are:
//
// - token kinds that come with "dependent-name" modifiers are less reliable
// (these tend to be vague, like Type or Unknown)
// - if we have multiple equally reliable kinds, drop token rather than guess
// - take the union of modifiers from all tokens
//
// In particular, heuristically resolved dependent names get their heuristic
// kind, plus the dependent modifier.
llvm::Optional<HighlightingToken>
resolveConflict(ArrayRef<HighlightingToken> Tokens) {
if (Tokens.size() == 1)
return Tokens[0];
if (Tokens.size() != 2)
return llvm::None;
unsigned Priority1 = evaluateHighlightPriority(Tokens[0]);
unsigned Priority2 = evaluateHighlightPriority(Tokens[1]);
if (Priority1 == Priority2 && Tokens[0].Kind != Tokens[1].Kind)
return llvm::None;
auto Result = Priority1 > Priority2 ? Tokens[0] : Tokens[1];
Result.Modifiers = Tokens[0].Modifiers | Tokens[1].Modifiers;
return Result;
}
/// Consumes source locations and maps them to text ranges for highlightings.
class HighlightingsBuilder {
public:
HighlightingsBuilder(const ParsedAST &AST)
: TB(AST.getTokens()), SourceMgr(AST.getSourceManager()),
LangOpts(AST.getLangOpts()) {}
HighlightingToken &addToken(SourceLocation Loc, HighlightingKind Kind) {
Loc = getHighlightableSpellingToken(Loc, SourceMgr);
if (Loc.isInvalid())
return InvalidHighlightingToken;
const auto *Tok = TB.spelledTokenAt(Loc);
assert(Tok);
return addToken(
halfOpenToRange(SourceMgr,
Tok->range(SourceMgr).toCharRange(SourceMgr)),
Kind);
}
HighlightingToken &addToken(Range R, HighlightingKind Kind) {
HighlightingToken HT;
HT.R = std::move(R);
HT.Kind = Kind;
Tokens.push_back(std::move(HT));
return Tokens.back();
}
std::vector<HighlightingToken> collect(ParsedAST &AST) && {
// Initializer lists can give duplicates of tokens, therefore all tokens
// must be deduplicated.
llvm::sort(Tokens);
auto Last = std::unique(Tokens.begin(), Tokens.end());
Tokens.erase(Last, Tokens.end());
// Macros can give tokens that have the same source range but conflicting
// kinds. In this case all tokens sharing this source range should be
// removed.
std::vector<HighlightingToken> NonConflicting;
NonConflicting.reserve(Tokens.size());
for (ArrayRef<HighlightingToken> TokRef = Tokens; !TokRef.empty();) {
ArrayRef<HighlightingToken> Conflicting =
TokRef.take_while([&](const HighlightingToken &T) {
// TokRef is guaranteed at least one element here because otherwise
// this predicate would never fire.
return T.R == TokRef.front().R;
});
if (auto Resolved = resolveConflict(Conflicting))
NonConflicting.push_back(*Resolved);
// TokRef[Conflicting.size()] is the next token with a different range (or
// the end of the Tokens).
TokRef = TokRef.drop_front(Conflicting.size());
}
const auto &SM = AST.getSourceManager();
StringRef MainCode = SM.getBufferOrFake(SM.getMainFileID()).getBuffer();
// Merge token stream with "inactive line" markers.
std::vector<HighlightingToken> WithInactiveLines;
auto SortedSkippedRanges = AST.getMacros().SkippedRanges;
llvm::sort(SortedSkippedRanges);
auto It = NonConflicting.begin();
for (const Range &R : SortedSkippedRanges) {
// Create one token for each line in the skipped range, so it works
// with line-based diffing.
assert(R.start.line <= R.end.line);
for (int Line = R.start.line; Line <= R.end.line; ++Line) {
// If the end of the inactive range is at the beginning
// of a line, that line is not inactive.
if (Line == R.end.line && R.end.character == 0)
continue;
// Copy tokens before the inactive line
for (; It != NonConflicting.end() && It->R.start.line < Line; ++It)
WithInactiveLines.push_back(std::move(*It));
// Add a token for the inactive line itself.
auto StartOfLine = positionToOffset(MainCode, Position{Line, 0});
if (StartOfLine) {
StringRef LineText =
MainCode.drop_front(*StartOfLine).take_until([](char C) {
return C == '\n';
});
HighlightingToken HT;
WithInactiveLines.emplace_back();
WithInactiveLines.back().Kind = HighlightingKind::InactiveCode;
WithInactiveLines.back().R.start.line = Line;
WithInactiveLines.back().R.end.line = Line;
WithInactiveLines.back().R.end.character =
static_cast<int>(lspLength(LineText));
} else {
elog("Failed to convert position to offset: {0}",
StartOfLine.takeError());
}
// Skip any other tokens on the inactive line. e.g.
// `#ifndef Foo` is considered as part of an inactive region when Foo is
// defined, and there is a Foo macro token.
// FIXME: we should reduce the scope of the inactive region to not
// include the directive itself.
while (It != NonConflicting.end() && It->R.start.line == Line)
++It;
}
}
// Copy tokens after the last inactive line
for (; It != NonConflicting.end(); ++It)
WithInactiveLines.push_back(std::move(*It));
return WithInactiveLines;
}
const HeuristicResolver *getResolver() const { return Resolver; }
private:
const syntax::TokenBuffer &TB;
const SourceManager &SourceMgr;
const LangOptions &LangOpts;
std::vector<HighlightingToken> Tokens;
const HeuristicResolver *Resolver;
// returned from addToken(InvalidLoc)
HighlightingToken InvalidHighlightingToken;
};
llvm::Optional<HighlightingModifier> scopeModifier(const NamedDecl *D) {
const DeclContext *DC = D->getDeclContext();
// Injected "Foo" within the class "Foo" has file scope, not class scope.
if (auto *R = dyn_cast_or_null<RecordDecl>(D))
if (R->isInjectedClassName())
DC = DC->getParent();
// Lambda captures are considered function scope, not class scope.
if (llvm::isa<FieldDecl>(D))
if (const auto *RD = llvm::dyn_cast<RecordDecl>(DC))
if (RD->isLambda())
return HighlightingModifier::FunctionScope;
// Walk up the DeclContext hierarchy until we find something interesting.
for (; !DC->isFileContext(); DC = DC->getParent()) {
if (DC->isFunctionOrMethod())
return HighlightingModifier::FunctionScope;
if (DC->isRecord())
return HighlightingModifier::ClassScope;
}
// Some template parameters (e.g. those for variable templates) don't have
// meaningful DeclContexts. That doesn't mean they're global!
if (DC->isTranslationUnit() && D->isTemplateParameter())
return llvm::None;
// ExternalLinkage threshold could be tweaked, e.g. module-visible as global.
if (D->getLinkageInternal() < ExternalLinkage)
return HighlightingModifier::FileScope;
return HighlightingModifier::GlobalScope;
}
llvm::Optional<HighlightingModifier> scopeModifier(const Type *T) {
if (!T)
return llvm::None;
if (T->isBuiltinType())
return HighlightingModifier::GlobalScope;
if (auto *TD = dyn_cast<TemplateTypeParmType>(T))
return scopeModifier(TD->getDecl());
if (auto *TD = T->getAsTagDecl())
return scopeModifier(TD);
return llvm::None;
}
/// Produces highlightings, which are not captured by findExplicitReferences,
/// e.g. highlights dependent names and 'auto' as the underlying type.
class CollectExtraHighlightings
: public RecursiveASTVisitor<CollectExtraHighlightings> {
public:
CollectExtraHighlightings(HighlightingsBuilder &H) : H(H) {}
bool VisitDecltypeTypeLoc(DecltypeTypeLoc L) {
if (auto K = kindForType(L.getTypePtr(), H.getResolver())) {
auto &Tok = H.addToken(L.getBeginLoc(), *K)
.addModifier(HighlightingModifier::Deduced);
if (auto Mod = scopeModifier(L.getTypePtr()))
Tok.addModifier(*Mod);
if (isDefaultLibrary(L.getTypePtr()))
Tok.addModifier(HighlightingModifier::DefaultLibrary);
}
return true;
}
bool VisitDeclaratorDecl(DeclaratorDecl *D) {
auto *AT = D->getType()->getContainedAutoType();
if (!AT)
return true;
if (auto K = kindForType(AT->getDeducedType().getTypePtrOrNull(),
H.getResolver())) {
auto &Tok = H.addToken(D->getTypeSpecStartLoc(), *K)
.addModifier(HighlightingModifier::Deduced);
const Type *Deduced = AT->getDeducedType().getTypePtrOrNull();
if (auto Mod = scopeModifier(Deduced))
Tok.addModifier(*Mod);
if (isDefaultLibrary(Deduced))
Tok.addModifier(HighlightingModifier::DefaultLibrary);
}
return true;
}
// We handle objective-C selectors specially, because one reference can
// cover several non-contiguous tokens.
void highlightObjCSelector(const ArrayRef<SourceLocation> &Locs, bool Decl,
bool Class, bool DefaultLibrary) {
HighlightingKind Kind =
Class ? HighlightingKind::StaticMethod : HighlightingKind::Method;
for (SourceLocation Part : Locs) {
auto &Tok =
H.addToken(Part, Kind).addModifier(HighlightingModifier::ClassScope);
if (Decl)
Tok.addModifier(HighlightingModifier::Declaration);
if (Class)
Tok.addModifier(HighlightingModifier::Static);
if (DefaultLibrary)
Tok.addModifier(HighlightingModifier::DefaultLibrary);
}
}
bool VisitObjCMethodDecl(ObjCMethodDecl *OMD) {
llvm::SmallVector<SourceLocation> Locs;
OMD->getSelectorLocs(Locs);
highlightObjCSelector(Locs, /*Decl=*/true, OMD->isClassMethod(),
isDefaultLibrary(OMD));
return true;
}
bool VisitObjCMessageExpr(ObjCMessageExpr *OME) {
llvm::SmallVector<SourceLocation> Locs;
OME->getSelectorLocs(Locs);
bool DefaultLibrary = false;
if (ObjCMethodDecl *OMD = OME->getMethodDecl())
DefaultLibrary = isDefaultLibrary(OMD);
highlightObjCSelector(Locs, /*Decl=*/false, OME->isClassMessage(),
DefaultLibrary);
return true;
}
// Objective-C allows you to use property syntax `self.prop` as sugar for
// `[self prop]` and `[self setProp:]` when there's no explicit `@property`
// for `prop` as well as for class properties. We treat this like a property
// even though semantically it's equivalent to a method expression.
void highlightObjCImplicitPropertyRef(const ObjCMethodDecl *OMD,
SourceLocation Loc) {
auto &Tok = H.addToken(Loc, HighlightingKind::Field)
.addModifier(HighlightingModifier::ClassScope);
if (OMD->isClassMethod())
Tok.addModifier(HighlightingModifier::Static);
if (isDefaultLibrary(OMD))
Tok.addModifier(HighlightingModifier::DefaultLibrary);
}
bool VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *OPRE) {
// We need to handle implicit properties here since they will appear to
// reference `ObjCMethodDecl` via an implicit `ObjCMessageExpr`, so normal
// highlighting will not work.
if (!OPRE->isImplicitProperty())
return true;
// A single property expr can reference both a getter and setter, but we can
// only provide a single semantic token, so prefer the getter. In most cases
// the end result should be the same, although it's technically possible
// that the user defines a setter for a system SDK.
if (OPRE->isMessagingGetter()) {
highlightObjCImplicitPropertyRef(OPRE->getImplicitPropertyGetter(),
OPRE->getLocation());
return true;
}
if (OPRE->isMessagingSetter()) {
highlightObjCImplicitPropertyRef(OPRE->getImplicitPropertySetter(),
OPRE->getLocation());
}
return true;
}
bool VisitOverloadExpr(OverloadExpr *E) {
if (!E->decls().empty())
return true; // handled by findExplicitReferences.
auto &Tok = H.addToken(E->getNameLoc(), HighlightingKind::Unknown)
.addModifier(HighlightingModifier::DependentName);
if (llvm::isa<UnresolvedMemberExpr>(E))
Tok.addModifier(HighlightingModifier::ClassScope);
// other case is UnresolvedLookupExpr, scope is unknown.
return true;
}
bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
H.addToken(E->getMemberNameInfo().getLoc(), HighlightingKind::Unknown)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
return true;
}
bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
H.addToken(E->getNameInfo().getLoc(), HighlightingKind::Unknown)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
return true;
}
bool VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
H.addToken(L.getNameLoc(), HighlightingKind::Type)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
return true;
}
bool VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc L) {
H.addToken(L.getTemplateNameLoc(), HighlightingKind::Type)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
return true;
}
bool TraverseTemplateArgumentLoc(TemplateArgumentLoc L) {
// Handle template template arguments only (other arguments are handled by
// their Expr, TypeLoc etc values).
if (L.getArgument().getKind() != TemplateArgument::Template &&
L.getArgument().getKind() != TemplateArgument::TemplateExpansion)
return RecursiveASTVisitor::TraverseTemplateArgumentLoc(L);
TemplateName N = L.getArgument().getAsTemplateOrTemplatePattern();
switch (N.getKind()) {
case TemplateName::OverloadedTemplate:
// Template template params must always be class templates.
// Don't bother to try to work out the scope here.
H.addToken(L.getTemplateNameLoc(), HighlightingKind::Class);
break;
case TemplateName::DependentTemplate:
case TemplateName::AssumedTemplate:
H.addToken(L.getTemplateNameLoc(), HighlightingKind::Class)
.addModifier(HighlightingModifier::DependentName);
break;
case TemplateName::Template:
case TemplateName::QualifiedTemplate:
case TemplateName::SubstTemplateTemplateParm:
case TemplateName::SubstTemplateTemplateParmPack:
// Names that could be resolved to a TemplateDecl are handled elsewhere.
break;
}
return RecursiveASTVisitor::TraverseTemplateArgumentLoc(L);
}
// findExplicitReferences will walk nested-name-specifiers and
// find anything that can be resolved to a Decl. However, non-leaf
// components of nested-name-specifiers which are dependent names
// (kind "Identifier") cannot be resolved to a decl, so we visit
// them here.
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc Q) {
if (NestedNameSpecifier *NNS = Q.getNestedNameSpecifier()) {
if (NNS->getKind() == NestedNameSpecifier::Identifier)
H.addToken(Q.getLocalBeginLoc(), HighlightingKind::Type)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
}
return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(Q);
}
private:
HighlightingsBuilder &H;
};
} // namespace
std::vector<HighlightingToken> getSemanticHighlightings(ParsedAST &AST) {
auto &C = AST.getASTContext();
// Add highlightings for AST nodes.
HighlightingsBuilder Builder(AST);
// Highlight 'decltype' and 'auto' as their underlying types.
CollectExtraHighlightings(Builder).TraverseAST(C);
// Highlight all decls and references coming from the AST.
findExplicitReferences(
C,
[&](ReferenceLoc R) {
for (const NamedDecl *Decl : R.Targets) {
if (!canHighlightName(Decl->getDeclName()))
continue;
auto Kind = kindForDecl(Decl, AST.getHeuristicResolver());
if (!Kind)
continue;
auto &Tok = Builder.addToken(R.NameLoc, *Kind);
// The attribute tests don't want to look at the template.
if (auto *TD = dyn_cast<TemplateDecl>(Decl)) {
if (auto *Templated = TD->getTemplatedDecl())
Decl = Templated;
}
if (auto Mod = scopeModifier(Decl))
Tok.addModifier(*Mod);
if (isConst(Decl))
Tok.addModifier(HighlightingModifier::Readonly);
if (isStatic(Decl))
Tok.addModifier(HighlightingModifier::Static);
if (isAbstract(Decl))
Tok.addModifier(HighlightingModifier::Abstract);
if (isDependent(Decl))
Tok.addModifier(HighlightingModifier::DependentName);
if (isDefaultLibrary(Decl))
Tok.addModifier(HighlightingModifier::DefaultLibrary);
if (Decl->isDeprecated())
Tok.addModifier(HighlightingModifier::Deprecated);
// Do not treat an UnresolvedUsingValueDecl as a declaration.
// It's more common to think of it as a reference to the
// underlying declaration.
if (R.IsDecl && !isa<UnresolvedUsingValueDecl>(Decl))
Tok.addModifier(HighlightingModifier::Declaration);
}
},
AST.getHeuristicResolver());
// Add highlightings for macro references.
auto AddMacro = [&](const MacroOccurrence &M) {
auto &T = Builder.addToken(M.Rng, HighlightingKind::Macro);
T.addModifier(HighlightingModifier::GlobalScope);
if (M.IsDefinition)
T.addModifier(HighlightingModifier::Declaration);
};
for (const auto &SIDToRefs : AST.getMacros().MacroRefs)
for (const auto &M : SIDToRefs.second)
AddMacro(M);
for (const auto &M : AST.getMacros().UnknownMacros)
AddMacro(M);
return std::move(Builder).collect(AST);
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, HighlightingKind K) {
switch (K) {
case HighlightingKind::Variable:
return OS << "Variable";
case HighlightingKind::LocalVariable:
return OS << "LocalVariable";
case HighlightingKind::Parameter:
return OS << "Parameter";
case HighlightingKind::Function:
return OS << "Function";
case HighlightingKind::Method:
return OS << "Method";
case HighlightingKind::StaticMethod:
return OS << "StaticMethod";
case HighlightingKind::Field:
return OS << "Field";
case HighlightingKind::StaticField:
return OS << "StaticField";
case HighlightingKind::Class:
return OS << "Class";
case HighlightingKind::Interface:
return OS << "Interface";
case HighlightingKind::Enum:
return OS << "Enum";
case HighlightingKind::EnumConstant:
return OS << "EnumConstant";
case HighlightingKind::Typedef:
return OS << "Typedef";
case HighlightingKind::Type:
return OS << "Type";
case HighlightingKind::Unknown:
return OS << "Unknown";
case HighlightingKind::Namespace:
return OS << "Namespace";
case HighlightingKind::TemplateParameter:
return OS << "TemplateParameter";
case HighlightingKind::Concept:
return OS << "Concept";
case HighlightingKind::Primitive:
return OS << "Primitive";
case HighlightingKind::Macro:
return OS << "Macro";
case HighlightingKind::InactiveCode:
return OS << "InactiveCode";
}
llvm_unreachable("invalid HighlightingKind");
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, HighlightingModifier K) {
switch (K) {
case HighlightingModifier::Declaration:
return OS << "decl"; // abbrevation for common case
default:
return OS << toSemanticTokenModifier(K);
}
}
bool operator==(const HighlightingToken &L, const HighlightingToken &R) {
return std::tie(L.R, L.Kind, L.Modifiers) ==
std::tie(R.R, R.Kind, R.Modifiers);
}
bool operator<(const HighlightingToken &L, const HighlightingToken &R) {
return std::tie(L.R, L.Kind, R.Modifiers) <
std::tie(R.R, R.Kind, R.Modifiers);
}
std::vector<SemanticToken>
toSemanticTokens(llvm::ArrayRef<HighlightingToken> Tokens) {
assert(std::is_sorted(Tokens.begin(), Tokens.end()));
std::vector<SemanticToken> Result;
const HighlightingToken *Last = nullptr;
for (const HighlightingToken &Tok : Tokens) {
Result.emplace_back();
SemanticToken &Out = Result.back();
// deltaStart/deltaLine are relative if possible.
if (Last) {
assert(Tok.R.start.line >= Last->R.start.line);
Out.deltaLine = Tok.R.start.line - Last->R.start.line;
if (Out.deltaLine == 0) {
assert(Tok.R.start.character >= Last->R.start.character);
Out.deltaStart = Tok.R.start.character - Last->R.start.character;
} else {
Out.deltaStart = Tok.R.start.character;
}
} else {
Out.deltaLine = Tok.R.start.line;
Out.deltaStart = Tok.R.start.character;
}
assert(Tok.R.end.line == Tok.R.start.line);
Out.length = Tok.R.end.character - Tok.R.start.character;
Out.tokenType = static_cast<unsigned>(Tok.Kind);
Out.tokenModifiers = Tok.Modifiers;
Last = &Tok;
}
return Result;
}
llvm::StringRef toSemanticTokenType(HighlightingKind Kind) {
switch (Kind) {
case HighlightingKind::Variable:
case HighlightingKind::LocalVariable:
case HighlightingKind::StaticField:
return "variable";
case HighlightingKind::Parameter:
return "parameter";
case HighlightingKind::Function:
return "function";
case HighlightingKind::Method:
return "method";
case HighlightingKind::StaticMethod:
// FIXME: better method with static modifier?
return "function";
case HighlightingKind::Field:
return "property";
case HighlightingKind::Class:
return "class";
case HighlightingKind::Interface:
return "interface";
case HighlightingKind::Enum:
return "enum";
case HighlightingKind::EnumConstant:
return "enumMember";
case HighlightingKind::Typedef:
case HighlightingKind::Type:
return "type";
case HighlightingKind::Unknown:
return "unknown"; // nonstandard
case HighlightingKind::Namespace:
return "namespace";
case HighlightingKind::TemplateParameter:
return "typeParameter";
case HighlightingKind::Concept:
return "concept"; // nonstandard
case HighlightingKind::Primitive:
return "type";
case HighlightingKind::Macro:
return "macro";
case HighlightingKind::InactiveCode:
return "comment";
}
llvm_unreachable("unhandled HighlightingKind");
}
llvm::StringRef toSemanticTokenModifier(HighlightingModifier Modifier) {
switch (Modifier) {
case HighlightingModifier::Declaration:
return "declaration";
case HighlightingModifier::Deprecated:
return "deprecated";
case HighlightingModifier::Readonly:
return "readonly";
case HighlightingModifier::Static:
return "static";
case HighlightingModifier::Deduced:
return "deduced"; // nonstandard
case HighlightingModifier::Abstract:
return "abstract";
case HighlightingModifier::DependentName:
return "dependentName"; // nonstandard
case HighlightingModifier::DefaultLibrary:
return "defaultLibrary";
case HighlightingModifier::FunctionScope:
return "functionScope"; // nonstandard
case HighlightingModifier::ClassScope:
return "classScope"; // nonstandard
case HighlightingModifier::FileScope:
return "fileScope"; // nonstandard
case HighlightingModifier::GlobalScope:
return "globalScope"; // nonstandard
}
llvm_unreachable("unhandled HighlightingModifier");
}
std::vector<SemanticTokensEdit>
diffTokens(llvm::ArrayRef<SemanticToken> Old,
llvm::ArrayRef<SemanticToken> New) {
// For now, just replace everything from the first-last modification.
// FIXME: use a real diff instead, this is bad with include-insertion.
unsigned Offset = 0;
while (!Old.empty() && !New.empty() && Old.front() == New.front()) {
++Offset;
Old = Old.drop_front();
New = New.drop_front();
}
while (!Old.empty() && !New.empty() && Old.back() == New.back()) {
Old = Old.drop_back();
New = New.drop_back();
}
if (Old.empty() && New.empty())
return {};
SemanticTokensEdit Edit;
Edit.startToken = Offset;
Edit.deleteTokens = Old.size();
Edit.tokens = New;
return {std::move(Edit)};
}
} // namespace clangd
} // namespace clang
|