File: XRefs.cpp

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (1990 lines) | stat: -rw-r--r-- 76,585 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
//===--- XRefs.cpp -----------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "XRefs.h"
#include "AST.h"
#include "CodeCompletionStrings.h"
#include "FindSymbols.h"
#include "FindTarget.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "Quality.h"
#include "Selection.h"
#include "SourceCode.h"
#include "URI.h"
#include "index/Index.h"
#include "index/Merge.h"
#include "index/Relation.h"
#include "index/SymbolLocation.h"
#include "support/Logger.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Attrs.inc"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Index/IndexDataConsumer.h"
#include "clang/Index/IndexSymbol.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Index/IndexingOptions.h"
#include "clang/Index/USRGeneration.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"

namespace clang {
namespace clangd {
namespace {

// Returns the single definition of the entity declared by D, if visible.
// In particular:
// - for non-redeclarable kinds (e.g. local vars), return D
// - for kinds that allow multiple definitions (e.g. namespaces), return nullptr
// Kinds of nodes that always return nullptr here will not have definitions
// reported by locateSymbolAt().
const NamedDecl *getDefinition(const NamedDecl *D) {
  assert(D);
  // Decl has one definition that we can find.
  if (const auto *TD = dyn_cast<TagDecl>(D))
    return TD->getDefinition();
  if (const auto *VD = dyn_cast<VarDecl>(D))
    return VD->getDefinition();
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
    return FD->getDefinition();
  // Objective-C classes can have three types of declarations:
  //
  // - forward declaration: @class MyClass;
  // - true declaration (interface definition): @interface MyClass ... @end
  // - true definition (implementation): @implementation MyClass ... @end
  //
  // Objective-C categories are extensions are on classes:
  //
  // - declaration: @interface MyClass (Ext) ... @end
  // - definition: @implementation MyClass (Ext) ... @end
  //
  // With one special case, a class extension, which is normally used to keep
  // some declarations internal to a file without exposing them in a header.
  //
  // - class extension declaration: @interface MyClass () ... @end
  // - which really links to class definition: @implementation MyClass ... @end
  if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
    return ID->getImplementation();
  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
    if (CD->IsClassExtension()) {
      if (const auto *ID = CD->getClassInterface())
        return ID->getImplementation();
      return nullptr;
    }
    return CD->getImplementation();
  }
  // Only a single declaration is allowed.
  if (isa<ValueDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
      isa<TemplateTemplateParmDecl>(D)) // except cases above
    return D;
  // Multiple definitions are allowed.
  return nullptr; // except cases above
}

void logIfOverflow(const SymbolLocation &Loc) {
  if (Loc.Start.hasOverflow() || Loc.End.hasOverflow())
    log("Possible overflow in symbol location: {0}", Loc);
}

// Convert a SymbolLocation to LSP's Location.
// TUPath is used to resolve the path of URI.
// FIXME: figure out a good home for it, and share the implementation with
// FindSymbols.
llvm::Optional<Location> toLSPLocation(const SymbolLocation &Loc,
                                       llvm::StringRef TUPath) {
  if (!Loc)
    return None;
  auto Uri = URI::parse(Loc.FileURI);
  if (!Uri) {
    elog("Could not parse URI {0}: {1}", Loc.FileURI, Uri.takeError());
    return None;
  }
  auto U = URIForFile::fromURI(*Uri, TUPath);
  if (!U) {
    elog("Could not resolve URI {0}: {1}", Loc.FileURI, U.takeError());
    return None;
  }

  Location LSPLoc;
  LSPLoc.uri = std::move(*U);
  LSPLoc.range.start.line = Loc.Start.line();
  LSPLoc.range.start.character = Loc.Start.column();
  LSPLoc.range.end.line = Loc.End.line();
  LSPLoc.range.end.character = Loc.End.column();
  logIfOverflow(Loc);
  return LSPLoc;
}

SymbolLocation toIndexLocation(const Location &Loc, std::string &URIStorage) {
  SymbolLocation SymLoc;
  URIStorage = Loc.uri.uri();
  SymLoc.FileURI = URIStorage.c_str();
  SymLoc.Start.setLine(Loc.range.start.line);
  SymLoc.Start.setColumn(Loc.range.start.character);
  SymLoc.End.setLine(Loc.range.end.line);
  SymLoc.End.setColumn(Loc.range.end.character);
  return SymLoc;
}

// Returns the preferred location between an AST location and an index location.
SymbolLocation getPreferredLocation(const Location &ASTLoc,
                                    const SymbolLocation &IdxLoc,
                                    std::string &Scratch) {
  // Also use a mock symbol for the index location so that other fields (e.g.
  // definition) are not factored into the preference.
  Symbol ASTSym, IdxSym;
  ASTSym.ID = IdxSym.ID = SymbolID("mock_symbol_id");
  ASTSym.CanonicalDeclaration = toIndexLocation(ASTLoc, Scratch);
  IdxSym.CanonicalDeclaration = IdxLoc;
  auto Merged = mergeSymbol(ASTSym, IdxSym);
  return Merged.CanonicalDeclaration;
}

std::vector<std::pair<const NamedDecl *, DeclRelationSet>>
getDeclAtPositionWithRelations(ParsedAST &AST, SourceLocation Pos,
                               DeclRelationSet Relations,
                               ASTNodeKind *NodeKind = nullptr) {
  unsigned Offset = AST.getSourceManager().getDecomposedSpellingLoc(Pos).second;
  std::vector<std::pair<const NamedDecl *, DeclRelationSet>> Result;
  auto ResultFromTree = [&](SelectionTree ST) {
    if (const SelectionTree::Node *N = ST.commonAncestor()) {
      if (NodeKind)
        *NodeKind = N->ASTNode.getNodeKind();
      llvm::copy_if(allTargetDecls(N->ASTNode, AST.getHeuristicResolver()),
                    std::back_inserter(Result),
                    [&](auto &Entry) { return !(Entry.second & ~Relations); });
    }
    return !Result.empty();
  };
  SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), Offset,
                            Offset, ResultFromTree);
  return Result;
}

std::vector<const NamedDecl *>
getDeclAtPosition(ParsedAST &AST, SourceLocation Pos, DeclRelationSet Relations,
                  ASTNodeKind *NodeKind = nullptr) {
  std::vector<const NamedDecl *> Result;
  for (auto &Entry :
       getDeclAtPositionWithRelations(AST, Pos, Relations, NodeKind))
    Result.push_back(Entry.first);
  return Result;
}

// Expects Loc to be a SpellingLocation, will bail out otherwise as it can't
// figure out a filename.
llvm::Optional<Location> makeLocation(const ASTContext &AST, SourceLocation Loc,
                                      llvm::StringRef TUPath) {
  const auto &SM = AST.getSourceManager();
  const FileEntry *F = SM.getFileEntryForID(SM.getFileID(Loc));
  if (!F)
    return None;
  auto FilePath = getCanonicalPath(F, SM);
  if (!FilePath) {
    log("failed to get path!");
    return None;
  }
  Location L;
  L.uri = URIForFile::canonicalize(*FilePath, TUPath);
  // We call MeasureTokenLength here as TokenBuffer doesn't store spelled tokens
  // outside the main file.
  auto TokLen = Lexer::MeasureTokenLength(Loc, SM, AST.getLangOpts());
  L.range = halfOpenToRange(
      SM, CharSourceRange::getCharRange(Loc, Loc.getLocWithOffset(TokLen)));
  return L;
}

// Treat #included files as symbols, to enable go-to-definition on them.
llvm::Optional<LocatedSymbol> locateFileReferent(const Position &Pos,
                                                 ParsedAST &AST,
                                                 llvm::StringRef MainFilePath) {
  for (auto &Inc : AST.getIncludeStructure().MainFileIncludes) {
    if (!Inc.Resolved.empty() && Inc.HashLine == Pos.line) {
      LocatedSymbol File;
      File.Name = std::string(llvm::sys::path::filename(Inc.Resolved));
      File.PreferredDeclaration = {
          URIForFile::canonicalize(Inc.Resolved, MainFilePath), Range{}};
      File.Definition = File.PreferredDeclaration;
      // We're not going to find any further symbols on #include lines.
      return File;
    }
  }
  return llvm::None;
}

// Macros are simple: there's no declaration/definition distinction.
// As a consequence, there's no need to look them up in the index either.
llvm::Optional<LocatedSymbol>
locateMacroReferent(const syntax::Token &TouchedIdentifier, ParsedAST &AST,
                    llvm::StringRef MainFilePath) {
  if (auto M = locateMacroAt(TouchedIdentifier, AST.getPreprocessor())) {
    if (auto Loc =
            makeLocation(AST.getASTContext(), M->NameLoc, MainFilePath)) {
      LocatedSymbol Macro;
      Macro.Name = std::string(M->Name);
      Macro.PreferredDeclaration = *Loc;
      Macro.Definition = Loc;
      Macro.ID = getSymbolID(M->Name, M->Info, AST.getSourceManager());
      return Macro;
    }
  }
  return llvm::None;
}

// A wrapper around `Decl::getCanonicalDecl` to support cases where Clang's
// definition of a canonical declaration doesn't match up to what a programmer
// would expect. For example, Objective-C classes can have three types of
// declarations:
//
// - forward declaration(s): @class MyClass;
// - true declaration (interface definition): @interface MyClass ... @end
// - true definition (implementation): @implementation MyClass ... @end
//
// Clang will consider the forward declaration to be the canonical declaration
// because it is first. We actually want the class definition if it is
// available since that is what a programmer would consider the primary
// declaration to be.
const NamedDecl *getPreferredDecl(const NamedDecl *D) {
  // FIXME: Canonical declarations of some symbols might refer to built-in
  // decls with possibly-invalid source locations (e.g. global new operator).
  // In such cases we should pick up a redecl with valid source location
  // instead of failing.
  D = llvm::cast<NamedDecl>(D->getCanonicalDecl());

  // Prefer Objective-C class/protocol definitions over the forward declaration.
  if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
    if (const auto *DefinitionID = ID->getDefinition())
      return DefinitionID;
  if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
    if (const auto *DefinitionID = PD->getDefinition())
      return DefinitionID;

  return D;
}

std::vector<LocatedSymbol> findImplementors(llvm::DenseSet<SymbolID> IDs,
                                            RelationKind Predicate,
                                            const SymbolIndex *Index,
                                            llvm::StringRef MainFilePath) {
  if (IDs.empty() || !Index)
    return {};
  static constexpr trace::Metric FindImplementorsMetric(
      "find_implementors", trace::Metric::Counter, "case");
  switch (Predicate) {
  case RelationKind::BaseOf:
    FindImplementorsMetric.record(1, "find-base");
    break;
  case RelationKind::OverriddenBy:
    FindImplementorsMetric.record(1, "find-override");
    break;
  }

  RelationsRequest Req;
  Req.Predicate = Predicate;
  Req.Subjects = std::move(IDs);
  std::vector<LocatedSymbol> Results;
  Index->relations(Req, [&](const SymbolID &Subject, const Symbol &Object) {
    auto DeclLoc =
        indexToLSPLocation(Object.CanonicalDeclaration, MainFilePath);
    if (!DeclLoc) {
      elog("Find overrides: {0}", DeclLoc.takeError());
      return;
    }
    Results.emplace_back();
    Results.back().Name = Object.Name.str();
    Results.back().PreferredDeclaration = *DeclLoc;
    auto DefLoc = indexToLSPLocation(Object.Definition, MainFilePath);
    if (!DefLoc) {
      elog("Failed to convert location: {0}", DefLoc.takeError());
      return;
    }
    Results.back().Definition = *DefLoc;
  });
  return Results;
}

// Decls are more complicated.
// The AST contains at least a declaration, maybe a definition.
// These are up-to-date, and so generally preferred over index results.
// We perform a single batch index lookup to find additional definitions.
std::vector<LocatedSymbol>
locateASTReferent(SourceLocation CurLoc, const syntax::Token *TouchedIdentifier,
                  ParsedAST &AST, llvm::StringRef MainFilePath,
                  const SymbolIndex *Index, ASTNodeKind *NodeKind) {
  const SourceManager &SM = AST.getSourceManager();
  // Results follow the order of Symbols.Decls.
  std::vector<LocatedSymbol> Result;
  // Keep track of SymbolID -> index mapping, to fill in index data later.
  llvm::DenseMap<SymbolID, size_t> ResultIndex;

  static constexpr trace::Metric LocateASTReferentMetric(
      "locate_ast_referent", trace::Metric::Counter, "case");
  auto AddResultDecl = [&](const NamedDecl *D) {
    D = getPreferredDecl(D);
    auto Loc =
        makeLocation(AST.getASTContext(), nameLocation(*D, SM), MainFilePath);
    if (!Loc)
      return;

    Result.emplace_back();
    Result.back().Name = printName(AST.getASTContext(), *D);
    Result.back().PreferredDeclaration = *Loc;
    Result.back().ID = getSymbolID(D);
    if (const NamedDecl *Def = getDefinition(D))
      Result.back().Definition = makeLocation(
          AST.getASTContext(), nameLocation(*Def, SM), MainFilePath);

    // Record SymbolID for index lookup later.
    if (auto ID = getSymbolID(D))
      ResultIndex[ID] = Result.size() - 1;
  };

  // Emit all symbol locations (declaration or definition) from AST.
  DeclRelationSet Relations =
      DeclRelation::TemplatePattern | DeclRelation::Alias;
  auto Candidates =
      getDeclAtPositionWithRelations(AST, CurLoc, Relations, NodeKind);
  llvm::DenseSet<SymbolID> VirtualMethods;
  for (const auto &E : Candidates) {
    const NamedDecl *D = E.first;
    if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D)) {
      // Special case: virtual void ^method() = 0: jump to all overrides.
      // FIXME: extend it to ^virtual, unfortunately, virtual location is not
      // saved in the AST.
      if (CMD->isPure()) {
        if (TouchedIdentifier && SM.getSpellingLoc(CMD->getLocation()) ==
                                     TouchedIdentifier->location()) {
          VirtualMethods.insert(getSymbolID(CMD));
          LocateASTReferentMetric.record(1, "method-to-override");
        }
      }
      // Special case: void foo() ^override: jump to the overridden method.
      const InheritableAttr *Attr = D->getAttr<OverrideAttr>();
      if (!Attr)
        Attr = D->getAttr<FinalAttr>();
      if (Attr && TouchedIdentifier &&
          SM.getSpellingLoc(Attr->getLocation()) ==
              TouchedIdentifier->location()) {
        LocateASTReferentMetric.record(1, "method-to-base");
        // We may be overridding multiple methods - offer them all.
        for (const NamedDecl *ND : CMD->overridden_methods())
          AddResultDecl(ND);
        continue;
      }
    }

    // Special case: the cursor is on an alias, prefer other results.
    // This targets "using ns::^Foo", where the target is more interesting.
    // This does not trigger on renaming aliases:
    //   `using Foo = ^Bar` already targets Bar via a TypeLoc
    //   `using ^Foo = Bar` has no other results, as Underlying is filtered.
    if (E.second & DeclRelation::Alias && Candidates.size() > 1 &&
        // beginLoc/endLoc are a token range, so rewind the identifier we're in.
        SM.isPointWithin(TouchedIdentifier ? TouchedIdentifier->location()
                                           : CurLoc,
                         D->getBeginLoc(), D->getEndLoc()))
      continue;

    // Special case: the point of declaration of a template specialization,
    // it's more useful to navigate to the template declaration.
    if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
      if (TouchedIdentifier &&
          D->getLocation() == TouchedIdentifier->location()) {
        LocateASTReferentMetric.record(1, "template-specialization-to-primary");
        AddResultDecl(CTSD->getSpecializedTemplate());
        continue;
      }
    }

    // Special case: if the class name is selected, also map Objective-C
    // categories and category implementations back to their class interface.
    //
    // Since `TouchedIdentifier` might refer to the `ObjCCategoryImplDecl`
    // instead of the `ObjCCategoryDecl` we intentionally check the contents
    // of the locs when checking for class name equivalence.
    if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D))
      if (const auto *ID = CD->getClassInterface())
        if (TouchedIdentifier &&
            (CD->getLocation() == TouchedIdentifier->location() ||
             ID->getName() == TouchedIdentifier->text(SM))) {
          LocateASTReferentMetric.record(1, "objc-category-to-class");
          AddResultDecl(ID);
        }

    LocateASTReferentMetric.record(1, "regular");
    // Otherwise the target declaration is the right one.
    AddResultDecl(D);
  }

  // Now query the index for all Symbol IDs we found in the AST.
  if (Index && !ResultIndex.empty()) {
    LookupRequest QueryRequest;
    for (auto It : ResultIndex)
      QueryRequest.IDs.insert(It.first);
    std::string Scratch;
    Index->lookup(QueryRequest, [&](const Symbol &Sym) {
      auto &R = Result[ResultIndex.lookup(Sym.ID)];

      if (R.Definition) { // from AST
        // Special case: if the AST yielded a definition, then it may not be
        // the right *declaration*. Prefer the one from the index.
        if (auto Loc = toLSPLocation(Sym.CanonicalDeclaration, MainFilePath))
          R.PreferredDeclaration = *Loc;

        // We might still prefer the definition from the index, e.g. for
        // generated symbols.
        if (auto Loc = toLSPLocation(
                getPreferredLocation(*R.Definition, Sym.Definition, Scratch),
                MainFilePath))
          R.Definition = *Loc;
      } else {
        R.Definition = toLSPLocation(Sym.Definition, MainFilePath);

        // Use merge logic to choose AST or index declaration.
        if (auto Loc = toLSPLocation(
                getPreferredLocation(R.PreferredDeclaration,
                                     Sym.CanonicalDeclaration, Scratch),
                MainFilePath))
          R.PreferredDeclaration = *Loc;
      }
    });
  }

  auto Overrides = findImplementors(VirtualMethods, RelationKind::OverriddenBy,
                                    Index, MainFilePath);
  Result.insert(Result.end(), Overrides.begin(), Overrides.end());
  return Result;
}

std::vector<LocatedSymbol> locateSymbolForType(const ParsedAST &AST,
                                               const QualType &Type) {
  const auto &SM = AST.getSourceManager();
  auto MainFilePath =
      getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
  if (!MainFilePath) {
    elog("Failed to get a path for the main file, so no symbol.");
    return {};
  }

  auto Decls = targetDecl(DynTypedNode::create(Type.getNonReferenceType()),
                          DeclRelation::TemplatePattern | DeclRelation::Alias,
                          AST.getHeuristicResolver());
  if (Decls.empty())
    return {};

  std::vector<LocatedSymbol> Results;
  const auto &ASTContext = AST.getASTContext();

  for (const NamedDecl *D : Decls) {
    D = getPreferredDecl(D);

    auto Loc = makeLocation(ASTContext, nameLocation(*D, SM), *MainFilePath);
    if (!Loc)
      continue;

    Results.emplace_back();
    Results.back().Name = printName(ASTContext, *D);
    Results.back().PreferredDeclaration = *Loc;
    Results.back().ID = getSymbolID(D);
    if (const NamedDecl *Def = getDefinition(D))
      Results.back().Definition =
          makeLocation(ASTContext, nameLocation(*Def, SM), *MainFilePath);
  }

  return Results;
}

bool tokenSpelledAt(SourceLocation SpellingLoc, const syntax::TokenBuffer &TB) {
  auto ExpandedTokens = TB.expandedTokens(
      TB.sourceManager().getMacroArgExpandedLocation(SpellingLoc));
  return !ExpandedTokens.empty();
}

llvm::StringRef sourcePrefix(SourceLocation Loc, const SourceManager &SM) {
  auto D = SM.getDecomposedLoc(Loc);
  bool Invalid = false;
  llvm::StringRef Buf = SM.getBufferData(D.first, &Invalid);
  if (Invalid || D.second > Buf.size())
    return "";
  return Buf.substr(0, D.second);
}

bool isDependentName(ASTNodeKind NodeKind) {
  return NodeKind.isSame(ASTNodeKind::getFromNodeKind<OverloadExpr>()) ||
         NodeKind.isSame(
             ASTNodeKind::getFromNodeKind<CXXDependentScopeMemberExpr>()) ||
         NodeKind.isSame(
             ASTNodeKind::getFromNodeKind<DependentScopeDeclRefExpr>());
}

} // namespace

std::vector<LocatedSymbol>
locateSymbolTextually(const SpelledWord &Word, ParsedAST &AST,
                      const SymbolIndex *Index, const std::string &MainFilePath,
                      ASTNodeKind NodeKind) {
  // Don't use heuristics if this is a real identifier, or not an
  // identifier.
  // Exception: dependent names, because those may have useful textual
  // matches that AST-based heuristics cannot find.
  if ((Word.ExpandedToken && !isDependentName(NodeKind)) ||
      !Word.LikelyIdentifier || !Index)
    return {};
  // We don't want to handle words in string literals. (It'd be nice to list
  // *allowed* token kinds explicitly, but comment Tokens aren't retained).
  if (Word.PartOfSpelledToken &&
      isStringLiteral(Word.PartOfSpelledToken->kind()))
    return {};

  const auto &SM = AST.getSourceManager();
  // Look up the selected word in the index.
  FuzzyFindRequest Req;
  Req.Query = Word.Text.str();
  Req.ProximityPaths = {MainFilePath};
  // Find the namespaces to query by lexing the file.
  Req.Scopes =
      visibleNamespaces(sourcePrefix(Word.Location, SM), AST.getLangOpts());
  // FIXME: For extra strictness, consider AnyScope=false.
  Req.AnyScope = true;
  // We limit the results to 3 further below. This limit is to avoid fetching
  // too much data, while still likely having enough for 3 results to remain
  // after additional filtering.
  Req.Limit = 10;
  bool TooMany = false;
  using ScoredLocatedSymbol = std::pair<float, LocatedSymbol>;
  std::vector<ScoredLocatedSymbol> ScoredResults;
  Index->fuzzyFind(Req, [&](const Symbol &Sym) {
    // Only consider exact name matches, including case.
    // This is to avoid too many false positives.
    // We could relax this in the future (e.g. to allow for typos) if we make
    // the query more accurate by other means.
    if (Sym.Name != Word.Text)
      return;

    // Exclude constructor results. They have the same name as the class,
    // but we don't have enough context to prefer them over the class.
    if (Sym.SymInfo.Kind == index::SymbolKind::Constructor)
      return;

    auto MaybeDeclLoc =
        indexToLSPLocation(Sym.CanonicalDeclaration, MainFilePath);
    if (!MaybeDeclLoc) {
      log("locateSymbolNamedTextuallyAt: {0}", MaybeDeclLoc.takeError());
      return;
    }
    LocatedSymbol Located;
    Located.PreferredDeclaration = *MaybeDeclLoc;
    Located.Name = (Sym.Name + Sym.TemplateSpecializationArgs).str();
    Located.ID = Sym.ID;
    if (Sym.Definition) {
      auto MaybeDefLoc = indexToLSPLocation(Sym.Definition, MainFilePath);
      if (!MaybeDefLoc) {
        log("locateSymbolNamedTextuallyAt: {0}", MaybeDefLoc.takeError());
        return;
      }
      Located.PreferredDeclaration = *MaybeDefLoc;
      Located.Definition = *MaybeDefLoc;
    }

    if (ScoredResults.size() >= 5) {
      // If we have more than 5 results, don't return anything,
      // as confidence is too low.
      // FIXME: Alternatively, try a stricter query?
      TooMany = true;
      return;
    }

    SymbolQualitySignals Quality;
    Quality.merge(Sym);
    SymbolRelevanceSignals Relevance;
    Relevance.Name = Sym.Name;
    Relevance.Query = SymbolRelevanceSignals::Generic;
    Relevance.merge(Sym);
    auto Score = evaluateSymbolAndRelevance(Quality.evaluateHeuristics(),
                                            Relevance.evaluateHeuristics());
    dlog("locateSymbolNamedTextuallyAt: {0}{1} = {2}\n{3}{4}\n", Sym.Scope,
         Sym.Name, Score, Quality, Relevance);

    ScoredResults.push_back({Score, std::move(Located)});
  });

  if (TooMany) {
    vlog("Heuristic index lookup for {0} returned too many candidates, ignored",
         Word.Text);
    return {};
  }

  llvm::sort(ScoredResults,
             [](const ScoredLocatedSymbol &A, const ScoredLocatedSymbol &B) {
               return A.first > B.first;
             });
  std::vector<LocatedSymbol> Results;
  for (auto &Res : std::move(ScoredResults))
    Results.push_back(std::move(Res.second));
  if (Results.empty())
    vlog("No heuristic index definition for {0}", Word.Text);
  else
    log("Found definition heuristically in index for {0}", Word.Text);
  return Results;
}

const syntax::Token *findNearbyIdentifier(const SpelledWord &Word,
                                          const syntax::TokenBuffer &TB) {
  // Don't use heuristics if this is a real identifier.
  // Unlikely identifiers are OK if they were used as identifiers nearby.
  if (Word.ExpandedToken)
    return nullptr;
  // We don't want to handle words in string literals. (It'd be nice to list
  // *allowed* token kinds explicitly, but comment Tokens aren't retained).
  if (Word.PartOfSpelledToken &&
      isStringLiteral(Word.PartOfSpelledToken->kind()))
    return {};

  const SourceManager &SM = TB.sourceManager();
  // We prefer the closest possible token, line-wise. Backwards is penalized.
  // Ties are implicitly broken by traversal order (first-one-wins).
  auto File = SM.getFileID(Word.Location);
  unsigned WordLine = SM.getSpellingLineNumber(Word.Location);
  auto Cost = [&](SourceLocation Loc) -> unsigned {
    assert(SM.getFileID(Loc) == File && "spelled token in wrong file?");
    unsigned Line = SM.getSpellingLineNumber(Loc);
    return Line >= WordLine ? Line - WordLine : 2 * (WordLine - Line);
  };
  const syntax::Token *BestTok = nullptr;
  unsigned BestCost = -1;
  // Search bounds are based on word length:
  // - forward: 2^N lines
  // - backward: 2^(N-1) lines.
  unsigned MaxDistance =
      1U << std::min<unsigned>(Word.Text.size(),
                               std::numeric_limits<unsigned>::digits - 1);
  // Line number for SM.translateLineCol() should be one-based, also
  // SM.translateLineCol() can handle line number greater than
  // number of lines in the file.
  // - LineMin = max(1, WordLine + 1 - 2^(N-1))
  // - LineMax = WordLine + 1 + 2^N
  unsigned LineMin =
      WordLine + 1 <= MaxDistance / 2 ? 1 : WordLine + 1 - MaxDistance / 2;
  unsigned LineMax = WordLine + 1 + MaxDistance;
  SourceLocation LocMin = SM.translateLineCol(File, LineMin, 1);
  assert(LocMin.isValid());
  SourceLocation LocMax = SM.translateLineCol(File, LineMax, 1);
  assert(LocMax.isValid());

  // Updates BestTok and BestCost if Tok is a good candidate.
  // May return true if the cost is too high for this token.
  auto Consider = [&](const syntax::Token &Tok) {
    if (Tok.location() < LocMin || Tok.location() > LocMax)
      return true; // we are too far from the word, break the outer loop.
    if (!(Tok.kind() == tok::identifier && Tok.text(SM) == Word.Text))
      return false;
    // No point guessing the same location we started with.
    if (Tok.location() == Word.Location)
      return false;
    // We've done cheap checks, compute cost so we can break the caller's loop.
    unsigned TokCost = Cost(Tok.location());
    if (TokCost >= BestCost)
      return true; // causes the outer loop to break.
    // Allow locations that might be part of the AST, and macros (even if empty)
    // but not things like disabled preprocessor sections.
    if (!(tokenSpelledAt(Tok.location(), TB) || TB.expansionStartingAt(&Tok)))
      return false;
    // We already verified this token is an improvement.
    BestCost = TokCost;
    BestTok = &Tok;
    return false;
  };
  auto SpelledTokens = TB.spelledTokens(File);
  // Find where the word occurred in the token stream, to search forward & back.
  auto *I = llvm::partition_point(SpelledTokens, [&](const syntax::Token &T) {
    assert(SM.getFileID(T.location()) == SM.getFileID(Word.Location));
    return T.location() < Word.Location; // Comparison OK: same file.
  });
  // Search for matches after the cursor.
  for (const syntax::Token &Tok : llvm::makeArrayRef(I, SpelledTokens.end()))
    if (Consider(Tok))
      break; // costs of later tokens are greater...
  // Search for matches before the cursor.
  for (const syntax::Token &Tok :
       llvm::reverse(llvm::makeArrayRef(SpelledTokens.begin(), I)))
    if (Consider(Tok))
      break;

  if (BestTok)
    vlog(
        "Word {0} under cursor {1} isn't a token (after PP), trying nearby {2}",
        Word.Text, Word.Location.printToString(SM),
        BestTok->location().printToString(SM));

  return BestTok;
}

std::vector<LocatedSymbol> locateSymbolAt(ParsedAST &AST, Position Pos,
                                          const SymbolIndex *Index) {
  const auto &SM = AST.getSourceManager();
  auto MainFilePath =
      getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
  if (!MainFilePath) {
    elog("Failed to get a path for the main file, so no references");
    return {};
  }

  if (auto File = locateFileReferent(Pos, AST, *MainFilePath))
    return {std::move(*File)};

  auto CurLoc = sourceLocationInMainFile(SM, Pos);
  if (!CurLoc) {
    elog("locateSymbolAt failed to convert position to source location: {0}",
         CurLoc.takeError());
    return {};
  }

  const syntax::Token *TouchedIdentifier = nullptr;
  auto TokensTouchingCursor =
      syntax::spelledTokensTouching(*CurLoc, AST.getTokens());
  for (const syntax::Token &Tok : TokensTouchingCursor) {
    if (Tok.kind() == tok::identifier) {
      if (auto Macro = locateMacroReferent(Tok, AST, *MainFilePath))
        // Don't look at the AST or index if we have a macro result.
        // (We'd just return declarations referenced from the macro's
        // expansion.)
        return {*std::move(Macro)};

      TouchedIdentifier = &Tok;
      break;
    }

    if (Tok.kind() == tok::kw_auto || Tok.kind() == tok::kw_decltype) {
      // go-to-definition on auto should find the definition of the deduced
      // type, if possible
      if (auto Deduced = getDeducedType(AST.getASTContext(), Tok.location())) {
        auto LocSym = locateSymbolForType(AST, *Deduced);
        if (!LocSym.empty())
          return LocSym;
      }
    }
  }

  ASTNodeKind NodeKind;
  auto ASTResults = locateASTReferent(*CurLoc, TouchedIdentifier, AST,
                                      *MainFilePath, Index, &NodeKind);
  if (!ASTResults.empty())
    return ASTResults;

  // If the cursor can't be resolved directly, try fallback strategies.
  auto Word =
      SpelledWord::touching(*CurLoc, AST.getTokens(), AST.getLangOpts());
  if (Word) {
    // Is the same word nearby a real identifier that might refer to something?
    if (const syntax::Token *NearbyIdent =
            findNearbyIdentifier(*Word, AST.getTokens())) {
      if (auto Macro = locateMacroReferent(*NearbyIdent, AST, *MainFilePath)) {
        log("Found macro definition heuristically using nearby identifier {0}",
            Word->Text);
        return {*std::move(Macro)};
      }
      ASTResults =
          locateASTReferent(NearbyIdent->location(), NearbyIdent, AST,
                            *MainFilePath, Index, /*NodeKind=*/nullptr);
      if (!ASTResults.empty()) {
        log("Found definition heuristically using nearby identifier {0}",
            NearbyIdent->text(SM));
        return ASTResults;
      } else {
        vlog("No definition found using nearby identifier {0} at {1}",
             Word->Text, Word->Location.printToString(SM));
      }
    }
    // No nearby word, or it didn't refer to anything either. Try the index.
    auto TextualResults =
        locateSymbolTextually(*Word, AST, Index, *MainFilePath, NodeKind);
    if (!TextualResults.empty())
      return TextualResults;
  }

  return {};
}

std::vector<DocumentLink> getDocumentLinks(ParsedAST &AST) {
  const auto &SM = AST.getSourceManager();
  auto MainFilePath =
      getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
  if (!MainFilePath) {
    elog("Failed to get a path for the main file, so no links");
    return {};
  }

  std::vector<DocumentLink> Result;
  for (auto &Inc : AST.getIncludeStructure().MainFileIncludes) {
    if (Inc.Resolved.empty())
      continue;
    auto HashLoc = SM.getComposedLoc(SM.getMainFileID(), Inc.HashOffset);
    const auto *HashTok = AST.getTokens().spelledTokenAt(HashLoc);
    assert(HashTok && "got inclusion at wrong offset");
    const auto *IncludeTok = std::next(HashTok);
    const auto *FileTok = std::next(IncludeTok);
    // FileTok->range is not sufficient here, as raw lexing wouldn't yield
    // correct tokens for angled filenames. Hence we explicitly use
    // Inc.Written's length.
    auto FileRange =
        syntax::FileRange(SM, FileTok->location(), Inc.Written.length())
            .toCharRange(SM);

    Result.push_back(
        DocumentLink({halfOpenToRange(SM, FileRange),
                      URIForFile::canonicalize(Inc.Resolved, *MainFilePath)}));
  }

  return Result;
}

namespace {

/// Collects references to symbols within the main file.
class ReferenceFinder : public index::IndexDataConsumer {
public:
  struct Reference {
    syntax::Token SpelledTok;
    index::SymbolRoleSet Role;
    SymbolID Target;

    Range range(const SourceManager &SM) const {
      return halfOpenToRange(SM, SpelledTok.range(SM).toCharRange(SM));
    }
  };

  ReferenceFinder(const ParsedAST &AST,
                  const llvm::DenseSet<SymbolID> &TargetIDs, bool PerToken)
      : PerToken(PerToken), AST(AST), TargetIDs(TargetIDs) {}

  std::vector<Reference> take() && {
    llvm::sort(References, [](const Reference &L, const Reference &R) {
      auto LTok = L.SpelledTok.location();
      auto RTok = R.SpelledTok.location();
      return std::tie(LTok, L.Role) < std::tie(RTok, R.Role);
    });
    // We sometimes see duplicates when parts of the AST get traversed twice.
    References.erase(std::unique(References.begin(), References.end(),
                                 [](const Reference &L, const Reference &R) {
                                   auto LTok = L.SpelledTok.location();
                                   auto RTok = R.SpelledTok.location();
                                   return std::tie(LTok, L.Role) ==
                                          std::tie(RTok, R.Role);
                                 }),
                     References.end());
    return std::move(References);
  }

  bool
  handleDeclOccurrence(const Decl *D, index::SymbolRoleSet Roles,
                       llvm::ArrayRef<index::SymbolRelation> Relations,
                       SourceLocation Loc,
                       index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
    const SourceManager &SM = AST.getSourceManager();
    if (!isInsideMainFile(Loc, SM))
      return true;
    SymbolID ID = getSymbolID(D);
    if (!TargetIDs.contains(ID))
      return true;
    const auto &TB = AST.getTokens();

    llvm::SmallVector<SourceLocation, 1> Locs;
    if (PerToken) {
      // Check whether this is one of the few constructs where the reference
      // can be split over several tokens.
      if (auto *OME = llvm::dyn_cast_or_null<ObjCMessageExpr>(ASTNode.OrigE)) {
        OME->getSelectorLocs(Locs);
      } else if (auto *OMD =
                     llvm::dyn_cast_or_null<ObjCMethodDecl>(ASTNode.OrigD)) {
        OMD->getSelectorLocs(Locs);
      }
      // Sanity check: we expect the *first* token to match the reported loc.
      // Otherwise, maybe it was e.g. some other kind of reference to a Decl.
      if (!Locs.empty() && Locs.front() != Loc)
        Locs.clear(); // First token doesn't match, assume our guess was wrong.
    }
    if (Locs.empty())
      Locs.push_back(Loc);

    for (SourceLocation L : Locs) {
      L = SM.getFileLoc(L);
      if (const auto *Tok = TB.spelledTokenAt(L))
        References.push_back({*Tok, Roles, ID});
    }
    return true;
  }

private:
  bool PerToken; // If true, report 3 references for split ObjC selector names.
  std::vector<Reference> References;
  const ParsedAST &AST;
  const llvm::DenseSet<SymbolID> &TargetIDs;
};

std::vector<ReferenceFinder::Reference>
findRefs(const llvm::DenseSet<SymbolID> &IDs, ParsedAST &AST, bool PerToken) {
  ReferenceFinder RefFinder(AST, IDs, PerToken);
  index::IndexingOptions IndexOpts;
  IndexOpts.SystemSymbolFilter =
      index::IndexingOptions::SystemSymbolFilterKind::All;
  IndexOpts.IndexFunctionLocals = true;
  IndexOpts.IndexParametersInDeclarations = true;
  IndexOpts.IndexTemplateParameters = true;
  indexTopLevelDecls(AST.getASTContext(), AST.getPreprocessor(),
                     AST.getLocalTopLevelDecls(), RefFinder, IndexOpts);
  return std::move(RefFinder).take();
}

const Stmt *getFunctionBody(DynTypedNode N) {
  if (const auto *FD = N.get<FunctionDecl>())
    return FD->getBody();
  if (const auto *FD = N.get<BlockDecl>())
    return FD->getBody();
  if (const auto *FD = N.get<LambdaExpr>())
    return FD->getBody();
  if (const auto *FD = N.get<ObjCMethodDecl>())
    return FD->getBody();
  return nullptr;
}

const Stmt *getLoopBody(DynTypedNode N) {
  if (const auto *LS = N.get<ForStmt>())
    return LS->getBody();
  if (const auto *LS = N.get<CXXForRangeStmt>())
    return LS->getBody();
  if (const auto *LS = N.get<WhileStmt>())
    return LS->getBody();
  if (const auto *LS = N.get<DoStmt>())
    return LS->getBody();
  return nullptr;
}

// AST traversal to highlight control flow statements under some root.
// Once we hit further control flow we prune the tree (or at least restrict
// what we highlight) so we capture e.g. breaks from the outer loop only.
class FindControlFlow : public RecursiveASTVisitor<FindControlFlow> {
  // Types of control-flow statements we might highlight.
  enum Target {
    Break = 1,
    Continue = 2,
    Return = 4,
    Case = 8,
    Throw = 16,
    Goto = 32,
    All = Break | Continue | Return | Case | Throw | Goto,
  };
  int Ignore = 0;     // bitmask of Target - what are we *not* highlighting?
  SourceRange Bounds; // Half-open, restricts reported targets.
  std::vector<SourceLocation> &Result;
  const SourceManager &SM;

  // Masks out targets for a traversal into D.
  // Traverses the subtree using Delegate() if any targets remain.
  template <typename Func>
  bool filterAndTraverse(DynTypedNode D, const Func &Delegate) {
    auto RestoreIgnore = llvm::make_scope_exit(
        [OldIgnore(Ignore), this] { Ignore = OldIgnore; });
    if (getFunctionBody(D))
      Ignore = All;
    else if (getLoopBody(D))
      Ignore |= Continue | Break;
    else if (D.get<SwitchStmt>())
      Ignore |= Break | Case;
    // Prune tree if we're not looking for anything.
    return (Ignore == All) ? true : Delegate();
  }

  void found(Target T, SourceLocation Loc) {
    if (T & Ignore)
      return;
    if (SM.isBeforeInTranslationUnit(Loc, Bounds.getBegin()) ||
        SM.isBeforeInTranslationUnit(Bounds.getEnd(), Loc))
      return;
    Result.push_back(Loc);
  }

public:
  FindControlFlow(SourceRange Bounds, std::vector<SourceLocation> &Result,
                  const SourceManager &SM)
      : Bounds(Bounds), Result(Result), SM(SM) {}

  // When traversing function or loops, limit targets to those that still
  // refer to the original root.
  bool TraverseDecl(Decl *D) {
    return !D || filterAndTraverse(DynTypedNode::create(*D), [&] {
      return RecursiveASTVisitor::TraverseDecl(D);
    });
  }
  bool TraverseStmt(Stmt *S) {
    return !S || filterAndTraverse(DynTypedNode::create(*S), [&] {
      return RecursiveASTVisitor::TraverseStmt(S);
    });
  }

  // Add leaves that we found and want.
  bool VisitReturnStmt(ReturnStmt *R) {
    found(Return, R->getReturnLoc());
    return true;
  }
  bool VisitBreakStmt(BreakStmt *B) {
    found(Break, B->getBreakLoc());
    return true;
  }
  bool VisitContinueStmt(ContinueStmt *C) {
    found(Continue, C->getContinueLoc());
    return true;
  }
  bool VisitSwitchCase(SwitchCase *C) {
    found(Case, C->getKeywordLoc());
    return true;
  }
  bool VisitCXXThrowExpr(CXXThrowExpr *T) {
    found(Throw, T->getThrowLoc());
    return true;
  }
  bool VisitGotoStmt(GotoStmt *G) {
    // Goto is interesting if its target is outside the root.
    if (const auto *LD = G->getLabel()) {
      if (SM.isBeforeInTranslationUnit(LD->getLocation(), Bounds.getBegin()) ||
          SM.isBeforeInTranslationUnit(Bounds.getEnd(), LD->getLocation()))
        found(Goto, G->getGotoLoc());
    }
    return true;
  }
};

// Given a location within a switch statement, return the half-open range that
// covers the case it's contained in.
// We treat `case X: case Y: ...` as one case, and assume no other fallthrough.
SourceRange findCaseBounds(const SwitchStmt &Switch, SourceLocation Loc,
                           const SourceManager &SM) {
  // Cases are not stored in order, sort them first.
  // (In fact they seem to be stored in reverse order, don't rely on this)
  std::vector<const SwitchCase *> Cases;
  for (const SwitchCase *Case = Switch.getSwitchCaseList(); Case;
       Case = Case->getNextSwitchCase())
    Cases.push_back(Case);
  llvm::sort(Cases, [&](const SwitchCase *L, const SwitchCase *R) {
    return SM.isBeforeInTranslationUnit(L->getKeywordLoc(), R->getKeywordLoc());
  });

  // Find the first case after the target location, the end of our range.
  auto CaseAfter = llvm::partition_point(Cases, [&](const SwitchCase *C) {
    return !SM.isBeforeInTranslationUnit(Loc, C->getKeywordLoc());
  });
  SourceLocation End = CaseAfter == Cases.end() ? Switch.getEndLoc()
                                                : (*CaseAfter)->getKeywordLoc();

  // Our target can be before the first case - cases are optional!
  if (CaseAfter == Cases.begin())
    return SourceRange(Switch.getBeginLoc(), End);
  // The start of our range is usually the previous case, but...
  auto CaseBefore = std::prev(CaseAfter);
  // ... rewind CaseBefore to the first in a `case A: case B: ...` sequence.
  while (CaseBefore != Cases.begin() &&
         (*std::prev(CaseBefore))->getSubStmt() == *CaseBefore)
    --CaseBefore;
  return SourceRange((*CaseBefore)->getKeywordLoc(), End);
}

// Returns the locations of control flow statements related to N. e.g.:
//   for    => branches: break/continue/return/throw
//   break  => controlling loop (forwhile/do), and its related control flow
//   return => all returns/throws from the same function
// When an inner block is selected, we include branches bound to outer blocks
// as these are exits from the inner block. e.g. return in a for loop.
// FIXME: We don't analyze catch blocks, throw is treated the same as return.
std::vector<SourceLocation> relatedControlFlow(const SelectionTree::Node &N) {
  const SourceManager &SM =
      N.getDeclContext().getParentASTContext().getSourceManager();
  std::vector<SourceLocation> Result;

  // First, check if we're at a node that can resolve to a root.
  enum class Cur { None, Break, Continue, Return, Case, Throw } Cursor;
  if (N.ASTNode.get<BreakStmt>()) {
    Cursor = Cur::Break;
  } else if (N.ASTNode.get<ContinueStmt>()) {
    Cursor = Cur::Continue;
  } else if (N.ASTNode.get<ReturnStmt>()) {
    Cursor = Cur::Return;
  } else if (N.ASTNode.get<CXXThrowExpr>()) {
    Cursor = Cur::Throw;
  } else if (N.ASTNode.get<SwitchCase>()) {
    Cursor = Cur::Case;
  } else if (const GotoStmt *GS = N.ASTNode.get<GotoStmt>()) {
    // We don't know what root to associate with, but highlight the goto/label.
    Result.push_back(GS->getGotoLoc());
    if (const auto *LD = GS->getLabel())
      Result.push_back(LD->getLocation());
    Cursor = Cur::None;
  } else {
    Cursor = Cur::None;
  }

  const Stmt *Root = nullptr; // Loop or function body to traverse.
  SourceRange Bounds;
  // Look up the tree for a root (or just at this node if we didn't find a leaf)
  for (const auto *P = &N; P; P = P->Parent) {
    // return associates with enclosing function
    if (const Stmt *FunctionBody = getFunctionBody(P->ASTNode)) {
      if (Cursor == Cur::Return || Cursor == Cur::Throw) {
        Root = FunctionBody;
      }
      break; // other leaves don't cross functions.
    }
    // break/continue associate with enclosing loop.
    if (const Stmt *LoopBody = getLoopBody(P->ASTNode)) {
      if (Cursor == Cur::None || Cursor == Cur::Break ||
          Cursor == Cur::Continue) {
        Root = LoopBody;
        // Highlight the loop keyword itself.
        // FIXME: for do-while, this only covers the `do`..
        Result.push_back(P->ASTNode.getSourceRange().getBegin());
        break;
      }
    }
    // For switches, users think of case statements as control flow blocks.
    // We highlight only occurrences surrounded by the same case.
    // We don't detect fallthrough (other than 'case X, case Y').
    if (const auto *SS = P->ASTNode.get<SwitchStmt>()) {
      if (Cursor == Cur::Break || Cursor == Cur::Case) {
        Result.push_back(SS->getSwitchLoc()); // Highlight the switch.
        Root = SS->getBody();
        // Limit to enclosing case, if there is one.
        Bounds = findCaseBounds(*SS, N.ASTNode.getSourceRange().getBegin(), SM);
        break;
      }
    }
    // If we didn't start at some interesting node, we're done.
    if (Cursor == Cur::None)
      break;
  }
  if (Root) {
    if (!Bounds.isValid())
      Bounds = Root->getSourceRange();
    FindControlFlow(Bounds, Result, SM).TraverseStmt(const_cast<Stmt *>(Root));
  }
  return Result;
}

DocumentHighlight toHighlight(const ReferenceFinder::Reference &Ref,
                              const SourceManager &SM) {
  DocumentHighlight DH;
  DH.range = Ref.range(SM);
  if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Write))
    DH.kind = DocumentHighlightKind::Write;
  else if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Read))
    DH.kind = DocumentHighlightKind::Read;
  else
    DH.kind = DocumentHighlightKind::Text;
  return DH;
}

llvm::Optional<DocumentHighlight> toHighlight(SourceLocation Loc,
                                              const syntax::TokenBuffer &TB) {
  Loc = TB.sourceManager().getFileLoc(Loc);
  if (const auto *Tok = TB.spelledTokenAt(Loc)) {
    DocumentHighlight Result;
    Result.range = halfOpenToRange(
        TB.sourceManager(),
        CharSourceRange::getCharRange(Tok->location(), Tok->endLocation()));
    return Result;
  }
  return llvm::None;
}

} // namespace

std::vector<DocumentHighlight> findDocumentHighlights(ParsedAST &AST,
                                                      Position Pos) {
  const SourceManager &SM = AST.getSourceManager();
  // FIXME: show references to macro within file?
  auto CurLoc = sourceLocationInMainFile(SM, Pos);
  if (!CurLoc) {
    llvm::consumeError(CurLoc.takeError());
    return {};
  }
  std::vector<DocumentHighlight> Result;
  auto TryTree = [&](SelectionTree ST) {
    if (const SelectionTree::Node *N = ST.commonAncestor()) {
      DeclRelationSet Relations =
          DeclRelation::TemplatePattern | DeclRelation::Alias;
      auto Decls =
          targetDecl(N->ASTNode, Relations, AST.getHeuristicResolver());
      if (!Decls.empty()) {
        // FIXME: we may get multiple DocumentHighlights with the same location
        // and different kinds, deduplicate them.
        llvm::DenseSet<SymbolID> Targets;
        for (const NamedDecl *ND : Decls)
          if (auto ID = getSymbolID(ND))
            Targets.insert(ID);
        for (const auto &Ref : findRefs(Targets, AST, /*PerToken=*/true))
          Result.push_back(toHighlight(Ref, SM));
        return true;
      }
      auto ControlFlow = relatedControlFlow(*N);
      if (!ControlFlow.empty()) {
        for (SourceLocation Loc : ControlFlow)
          if (auto Highlight = toHighlight(Loc, AST.getTokens()))
            Result.push_back(std::move(*Highlight));
        return true;
      }
    }
    return false;
  };

  unsigned Offset =
      AST.getSourceManager().getDecomposedSpellingLoc(*CurLoc).second;
  SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), Offset,
                            Offset, TryTree);
  return Result;
}

std::vector<LocatedSymbol> findImplementations(ParsedAST &AST, Position Pos,
                                               const SymbolIndex *Index) {
  // We rely on index to find the implementations in subclasses.
  // FIXME: Index can be stale, so we may loose some latest results from the
  // main file.
  if (!Index)
    return {};
  const SourceManager &SM = AST.getSourceManager();
  auto MainFilePath =
      getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
  if (!MainFilePath) {
    elog("Failed to get a path for the main file, so no implementations.");
    return {};
  }
  auto CurLoc = sourceLocationInMainFile(SM, Pos);
  if (!CurLoc) {
    elog("Failed to convert position to source location: {0}",
         CurLoc.takeError());
    return {};
  }
  DeclRelationSet Relations =
      DeclRelation::TemplatePattern | DeclRelation::Alias;
  llvm::DenseSet<SymbolID> IDs;
  RelationKind QueryKind;
  for (const NamedDecl *ND : getDeclAtPosition(AST, *CurLoc, Relations)) {
    if (const auto *CXXMD = llvm::dyn_cast<CXXMethodDecl>(ND)) {
      if (CXXMD->isVirtual()) {
        IDs.insert(getSymbolID(ND));
        QueryKind = RelationKind::OverriddenBy;
      }
    } else if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
      IDs.insert(getSymbolID(RD));
      QueryKind = RelationKind::BaseOf;
    }
  }
  return findImplementors(std::move(IDs), QueryKind, Index, *MainFilePath);
}

namespace {
// Recursively finds all the overridden methods of `CMD` in complete type
// hierarchy.
void getOverriddenMethods(const CXXMethodDecl *CMD,
                          llvm::DenseSet<SymbolID> &OverriddenMethods) {
  if (!CMD)
    return;
  for (const CXXMethodDecl *Base : CMD->overridden_methods()) {
    if (auto ID = getSymbolID(Base))
      OverriddenMethods.insert(ID);
    getOverriddenMethods(Base, OverriddenMethods);
  }
}
} // namespace

ReferencesResult findReferences(ParsedAST &AST, Position Pos, uint32_t Limit,
                                const SymbolIndex *Index) {
  if (!Limit)
    Limit = std::numeric_limits<uint32_t>::max();
  ReferencesResult Results;
  const SourceManager &SM = AST.getSourceManager();
  auto MainFilePath =
      getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
  if (!MainFilePath) {
    elog("Failed to get a path for the main file, so no references");
    return Results;
  }
  auto URIMainFile = URIForFile::canonicalize(*MainFilePath, *MainFilePath);
  auto CurLoc = sourceLocationInMainFile(SM, Pos);
  if (!CurLoc) {
    llvm::consumeError(CurLoc.takeError());
    return {};
  }

  llvm::DenseSet<SymbolID> IDs, OverriddenMethods;

  const auto *IdentifierAtCursor =
      syntax::spelledIdentifierTouching(*CurLoc, AST.getTokens());
  llvm::Optional<DefinedMacro> Macro;
  if (IdentifierAtCursor)
    Macro = locateMacroAt(*IdentifierAtCursor, AST.getPreprocessor());
  if (Macro) {
    // Handle references to macro.
    if (auto MacroSID = getSymbolID(Macro->Name, Macro->Info, SM)) {
      // Collect macro references from main file.
      const auto &IDToRefs = AST.getMacros().MacroRefs;
      auto Refs = IDToRefs.find(MacroSID);
      if (Refs != IDToRefs.end()) {
        for (const auto &Ref : Refs->second) {
          ReferencesResult::Reference Result;
          Result.Loc.range = Ref.Rng;
          Result.Loc.uri = URIMainFile;
          if (Ref.IsDefinition) {
            Result.Attributes |= ReferencesResult::Declaration;
            Result.Attributes |= ReferencesResult::Definition;
          }
          Results.References.push_back(std::move(Result));
        }
      }
      IDs.insert(MacroSID);
    }
  } else {
    // Handle references to Decls.

    DeclRelationSet Relations =
        DeclRelation::TemplatePattern | DeclRelation::Alias;
    std::vector<const NamedDecl *> Decls =
        getDeclAtPosition(AST, *CurLoc, Relations);
    llvm::DenseSet<SymbolID> Targets;
    for (const NamedDecl *D : Decls)
      if (auto ID = getSymbolID(D))
        Targets.insert(ID);

    RelationsRequest OverriddenBy;
    if (Index) {
      OverriddenBy.Predicate = RelationKind::OverriddenBy;
      for (const NamedDecl *ND : Decls) {
        // Special case: For virtual methods, report decl/def of overrides and
        // references to all overridden methods in complete type hierarchy.
        if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(ND)) {
          if (CMD->isVirtual())
            if (IdentifierAtCursor && SM.getSpellingLoc(CMD->getLocation()) ==
                                          IdentifierAtCursor->location()) {
              if (auto ID = getSymbolID(CMD))
                OverriddenBy.Subjects.insert(ID);
              getOverriddenMethods(CMD, OverriddenMethods);
            }
        }
      }
    }

    // We traverse the AST to find references in the main file.
    auto MainFileRefs = findRefs(Targets, AST, /*PerToken=*/false);
    // We may get multiple refs with the same location and different Roles, as
    // cross-reference is only interested in locations, we deduplicate them
    // by the location to avoid emitting duplicated locations.
    MainFileRefs.erase(std::unique(MainFileRefs.begin(), MainFileRefs.end(),
                                   [](const ReferenceFinder::Reference &L,
                                      const ReferenceFinder::Reference &R) {
                                     return L.SpelledTok.location() ==
                                            R.SpelledTok.location();
                                   }),
                       MainFileRefs.end());
    for (const auto &Ref : MainFileRefs) {
      ReferencesResult::Reference Result;
      Result.Loc.range = Ref.range(SM);
      Result.Loc.uri = URIMainFile;
      if (Ref.Role & static_cast<unsigned>(index::SymbolRole::Declaration))
        Result.Attributes |= ReferencesResult::Declaration;
      // clang-index doesn't report definitions as declarations, but they are.
      if (Ref.Role & static_cast<unsigned>(index::SymbolRole::Definition))
        Result.Attributes |=
            ReferencesResult::Definition | ReferencesResult::Declaration;
      Results.References.push_back(std::move(Result));
    }
    // Add decl/def of overridding methods.
    if (Index && Results.References.size() <= Limit &&
        !OverriddenBy.Subjects.empty())
      Index->relations(
          OverriddenBy, [&](const SymbolID &Subject, const Symbol &Object) {
            if (auto LSPLoc =
                    toLSPLocation(Object.CanonicalDeclaration, *MainFilePath)) {
              ReferencesResult::Reference Result;
              Result.Loc = std::move(*LSPLoc);
              Result.Attributes =
                  ReferencesResult::Declaration | ReferencesResult::Override;
              Results.References.push_back(std::move(Result));
            }
            if (auto LSPLoc = toLSPLocation(Object.Definition, *MainFilePath)) {
              ReferencesResult::Reference Result;
              Result.Loc = std::move(*LSPLoc);
              Result.Attributes = ReferencesResult::Declaration |
                                  ReferencesResult::Definition |
                                  ReferencesResult::Override;
              Results.References.push_back(std::move(Result));
            }
          });

    if (Index && Results.References.size() <= Limit) {
      for (const Decl *D : Decls) {
        // Not all symbols can be referenced from outside (e.g.
        // function-locals).
        // TODO: we could skip TU-scoped symbols here (e.g. static functions) if
        // we know this file isn't a header. The details might be tricky.
        if (D->getParentFunctionOrMethod())
          continue;
        if (auto ID = getSymbolID(D))
          IDs.insert(ID);
      }
    }
  }
  // Now query the index for references from other files.
  auto QueryIndex = [&](llvm::DenseSet<SymbolID> IDs, bool AllowAttributes,
                        bool AllowMainFileSymbols) {
    RefsRequest Req;
    Req.IDs = std::move(IDs);
    Req.Limit = Limit;
    if (Req.IDs.empty() || !Index || Results.References.size() > Limit)
      return;
    Results.HasMore |= Index->refs(Req, [&](const Ref &R) {
      // No need to continue process if we reach the limit.
      if (Results.References.size() > Limit)
        return;
      auto LSPLoc = toLSPLocation(R.Location, *MainFilePath);
      // Avoid indexed results for the main file - the AST is authoritative.
      if (!LSPLoc ||
          (!AllowMainFileSymbols && LSPLoc->uri.file() == *MainFilePath))
        return;
      ReferencesResult::Reference Result;
      Result.Loc = std::move(*LSPLoc);
      if (AllowAttributes) {
        if ((R.Kind & RefKind::Declaration) == RefKind::Declaration)
          Result.Attributes |= ReferencesResult::Declaration;
        // FIXME: our index should definitely store def | decl separately!
        if ((R.Kind & RefKind::Definition) == RefKind::Definition)
          Result.Attributes |=
              ReferencesResult::Declaration | ReferencesResult::Definition;
      }
      Results.References.push_back(std::move(Result));
    });
  };
  QueryIndex(std::move(IDs), /*AllowAttributes=*/true,
             /*AllowMainFileSymbols=*/false);
  // For a virtual method: Occurrences of BaseMethod should be treated as refs
  // and not as decl/def. Allow symbols from main file since AST does not report
  // these.
  QueryIndex(std::move(OverriddenMethods), /*AllowAttributes=*/false,
             /*AllowMainFileSymbols=*/true);
  if (Results.References.size() > Limit) {
    Results.HasMore = true;
    Results.References.resize(Limit);
  }
  return Results;
}

std::vector<SymbolDetails> getSymbolInfo(ParsedAST &AST, Position Pos) {
  const SourceManager &SM = AST.getSourceManager();
  auto CurLoc = sourceLocationInMainFile(SM, Pos);
  if (!CurLoc) {
    llvm::consumeError(CurLoc.takeError());
    return {};
  }

  std::vector<SymbolDetails> Results;

  // We also want the targets of using-decls, so we include
  // DeclRelation::Underlying.
  DeclRelationSet Relations = DeclRelation::TemplatePattern |
                              DeclRelation::Alias | DeclRelation::Underlying;
  for (const NamedDecl *D : getDeclAtPosition(AST, *CurLoc, Relations)) {
    SymbolDetails NewSymbol;
    std::string QName = printQualifiedName(*D);
    auto SplitQName = splitQualifiedName(QName);
    NewSymbol.containerName = std::string(SplitQName.first);
    NewSymbol.name = std::string(SplitQName.second);

    if (NewSymbol.containerName.empty()) {
      if (const auto *ParentND =
              dyn_cast_or_null<NamedDecl>(D->getDeclContext()))
        NewSymbol.containerName = printQualifiedName(*ParentND);
    }
    llvm::SmallString<32> USR;
    if (!index::generateUSRForDecl(D, USR)) {
      NewSymbol.USR = std::string(USR.str());
      NewSymbol.ID = SymbolID(NewSymbol.USR);
    }
    Results.push_back(std::move(NewSymbol));
  }

  const auto *IdentifierAtCursor =
      syntax::spelledIdentifierTouching(*CurLoc, AST.getTokens());
  if (!IdentifierAtCursor)
    return Results;

  if (auto M = locateMacroAt(*IdentifierAtCursor, AST.getPreprocessor())) {
    SymbolDetails NewMacro;
    NewMacro.name = std::string(M->Name);
    llvm::SmallString<32> USR;
    if (!index::generateUSRForMacro(NewMacro.name, M->Info->getDefinitionLoc(),
                                    SM, USR)) {
      NewMacro.USR = std::string(USR.str());
      NewMacro.ID = SymbolID(NewMacro.USR);
    }
    Results.push_back(std::move(NewMacro));
  }

  return Results;
}

llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const LocatedSymbol &S) {
  OS << S.Name << ": " << S.PreferredDeclaration;
  if (S.Definition)
    OS << " def=" << *S.Definition;
  return OS;
}

llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                              const ReferencesResult::Reference &R) {
  OS << R.Loc;
  if (R.Attributes & ReferencesResult::Declaration)
    OS << " [decl]";
  if (R.Attributes & ReferencesResult::Definition)
    OS << " [def]";
  if (R.Attributes & ReferencesResult::Override)
    OS << " [override]";
  return OS;
}

template <typename HierarchyItem>
static llvm::Optional<HierarchyItem> declToHierarchyItem(const NamedDecl &ND) {
  ASTContext &Ctx = ND.getASTContext();
  auto &SM = Ctx.getSourceManager();
  SourceLocation NameLoc = nameLocation(ND, Ctx.getSourceManager());
  SourceLocation BeginLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getBeginLoc()));
  SourceLocation EndLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getEndLoc()));
  const auto DeclRange =
      toHalfOpenFileRange(SM, Ctx.getLangOpts(), {BeginLoc, EndLoc});
  if (!DeclRange)
    return llvm::None;
  auto FilePath =
      getCanonicalPath(SM.getFileEntryForID(SM.getFileID(NameLoc)), SM);
  auto TUPath = getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
  if (!FilePath || !TUPath)
    return llvm::None; // Not useful without a uri.

  Position NameBegin = sourceLocToPosition(SM, NameLoc);
  Position NameEnd = sourceLocToPosition(
      SM, Lexer::getLocForEndOfToken(NameLoc, 0, SM, Ctx.getLangOpts()));

  index::SymbolInfo SymInfo = index::getSymbolInfo(&ND);
  // FIXME: This is not classifying constructors, destructors and operators
  // correctly.
  SymbolKind SK = indexSymbolKindToSymbolKind(SymInfo.Kind);

  HierarchyItem HI;
  HI.name = printName(Ctx, ND);
  HI.kind = SK;
  HI.range = Range{sourceLocToPosition(SM, DeclRange->getBegin()),
                   sourceLocToPosition(SM, DeclRange->getEnd())};
  HI.selectionRange = Range{NameBegin, NameEnd};
  if (!HI.range.contains(HI.selectionRange)) {
    // 'selectionRange' must be contained in 'range', so in cases where clang
    // reports unrelated ranges we need to reconcile somehow.
    HI.range = HI.selectionRange;
  }

  HI.uri = URIForFile::canonicalize(*FilePath, *TUPath);

  // Compute the SymbolID and store it in the 'data' field.
  // This allows typeHierarchy/resolve to be used to
  // resolve children of items returned in a previous request
  // for parents.
  if (auto ID = getSymbolID(&ND))
    HI.data = ID.str();

  return HI;
}

static llvm::Optional<TypeHierarchyItem>
declToTypeHierarchyItem(const NamedDecl &ND) {
  auto Result = declToHierarchyItem<TypeHierarchyItem>(ND);
  if (Result)
    Result->deprecated = ND.isDeprecated();
  return Result;
}

static llvm::Optional<CallHierarchyItem>
declToCallHierarchyItem(const NamedDecl &ND) {
  auto Result = declToHierarchyItem<CallHierarchyItem>(ND);
  if (Result && ND.isDeprecated())
    Result->tags.push_back(SymbolTag::Deprecated);
  return Result;
}

template <typename HierarchyItem>
static llvm::Optional<HierarchyItem> symbolToHierarchyItem(const Symbol &S,
                                                           PathRef TUPath) {
  auto Loc = symbolToLocation(S, TUPath);
  if (!Loc) {
    elog("Failed to convert symbol to hierarchy item: {0}", Loc.takeError());
    return llvm::None;
  }
  HierarchyItem HI;
  HI.name = std::string(S.Name);
  HI.kind = indexSymbolKindToSymbolKind(S.SymInfo.Kind);
  HI.selectionRange = Loc->range;
  // FIXME: Populate 'range' correctly
  // (https://github.com/clangd/clangd/issues/59).
  HI.range = HI.selectionRange;
  HI.uri = Loc->uri;
  // Store the SymbolID in the 'data' field. The client will
  // send this back in requests to resolve additional levels
  // of the hierarchy.
  HI.data = S.ID.str();

  return HI;
}

static llvm::Optional<TypeHierarchyItem>
symbolToTypeHierarchyItem(const Symbol &S, PathRef TUPath) {
  auto Result = symbolToHierarchyItem<TypeHierarchyItem>(S, TUPath);
  if (Result)
    Result->deprecated = (S.Flags & Symbol::Deprecated);
  return Result;
}

static llvm::Optional<CallHierarchyItem>
symbolToCallHierarchyItem(const Symbol &S, PathRef TUPath) {
  auto Result = symbolToHierarchyItem<CallHierarchyItem>(S, TUPath);
  if (Result && (S.Flags & Symbol::Deprecated))
    Result->tags.push_back(SymbolTag::Deprecated);
  return Result;
}

static void fillSubTypes(const SymbolID &ID,
                         std::vector<TypeHierarchyItem> &SubTypes,
                         const SymbolIndex *Index, int Levels, PathRef TUPath) {
  RelationsRequest Req;
  Req.Subjects.insert(ID);
  Req.Predicate = RelationKind::BaseOf;
  Index->relations(Req, [&](const SymbolID &Subject, const Symbol &Object) {
    if (Optional<TypeHierarchyItem> ChildSym =
            symbolToTypeHierarchyItem(Object, TUPath)) {
      if (Levels > 1) {
        ChildSym->children.emplace();
        fillSubTypes(Object.ID, *ChildSym->children, Index, Levels - 1, TUPath);
      }
      SubTypes.emplace_back(std::move(*ChildSym));
    }
  });
}

using RecursionProtectionSet = llvm::SmallSet<const CXXRecordDecl *, 4>;

static void fillSuperTypes(const CXXRecordDecl &CXXRD, ASTContext &ASTCtx,
                           std::vector<TypeHierarchyItem> &SuperTypes,
                           RecursionProtectionSet &RPSet) {
  // typeParents() will replace dependent template specializations
  // with their class template, so to avoid infinite recursion for
  // certain types of hierarchies, keep the templates encountered
  // along the parent chain in a set, and stop the recursion if one
  // starts to repeat.
  auto *Pattern = CXXRD.getDescribedTemplate() ? &CXXRD : nullptr;
  if (Pattern) {
    if (!RPSet.insert(Pattern).second) {
      return;
    }
  }

  for (const CXXRecordDecl *ParentDecl : typeParents(&CXXRD)) {
    if (Optional<TypeHierarchyItem> ParentSym =
            declToTypeHierarchyItem(*ParentDecl)) {
      ParentSym->parents.emplace();
      fillSuperTypes(*ParentDecl, ASTCtx, *ParentSym->parents, RPSet);
      SuperTypes.emplace_back(std::move(*ParentSym));
    }
  }

  if (Pattern) {
    RPSet.erase(Pattern);
  }
}

const CXXRecordDecl *findRecordTypeAt(ParsedAST &AST, Position Pos) {
  auto RecordFromNode =
      [&AST](const SelectionTree::Node *N) -> const CXXRecordDecl * {
    if (!N)
      return nullptr;

    // Note: explicitReferenceTargets() will search for both template
    // instantiations and template patterns, and prefer the former if available
    // (generally, one will be available for non-dependent specializations of a
    // class template).
    auto Decls = explicitReferenceTargets(N->ASTNode, DeclRelation::Underlying,
                                          AST.getHeuristicResolver());
    if (Decls.empty())
      return nullptr;

    const NamedDecl *D = Decls[0];

    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
      // If this is a variable, use the type of the variable.
      return VD->getType().getTypePtr()->getAsCXXRecordDecl();
    }

    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
      // If this is a method, use the type of the class.
      return Method->getParent();
    }

    // We don't handle FieldDecl because it's not clear what behaviour
    // the user would expect: the enclosing class type (as with a
    // method), or the field's type (as with a variable).

    return dyn_cast<CXXRecordDecl>(D);
  };

  const SourceManager &SM = AST.getSourceManager();
  const CXXRecordDecl *Result = nullptr;
  auto Offset = positionToOffset(SM.getBufferData(SM.getMainFileID()), Pos);
  if (!Offset) {
    llvm::consumeError(Offset.takeError());
    return Result;
  }
  SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), *Offset,
                            *Offset, [&](SelectionTree ST) {
                              Result = RecordFromNode(ST.commonAncestor());
                              return Result != nullptr;
                            });
  return Result;
}

std::vector<const CXXRecordDecl *> typeParents(const CXXRecordDecl *CXXRD) {
  std::vector<const CXXRecordDecl *> Result;

  // If this is an invalid instantiation, instantiation of the bases
  // may not have succeeded, so fall back to the template pattern.
  if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CXXRD)) {
    if (CTSD->isInvalidDecl())
      CXXRD = CTSD->getSpecializedTemplate()->getTemplatedDecl();
  }

  // Can't query bases without a definition.
  if (!CXXRD->hasDefinition())
    return Result;

  for (auto Base : CXXRD->bases()) {
    const CXXRecordDecl *ParentDecl = nullptr;

    const Type *Type = Base.getType().getTypePtr();
    if (const RecordType *RT = Type->getAs<RecordType>()) {
      ParentDecl = RT->getAsCXXRecordDecl();
    }

    if (!ParentDecl) {
      // Handle a dependent base such as "Base<T>" by using the primary
      // template.
      if (const TemplateSpecializationType *TS =
              Type->getAs<TemplateSpecializationType>()) {
        TemplateName TN = TS->getTemplateName();
        if (TemplateDecl *TD = TN.getAsTemplateDecl()) {
          ParentDecl = dyn_cast<CXXRecordDecl>(TD->getTemplatedDecl());
        }
      }
    }

    if (ParentDecl)
      Result.push_back(ParentDecl);
  }

  return Result;
}

llvm::Optional<TypeHierarchyItem>
getTypeHierarchy(ParsedAST &AST, Position Pos, int ResolveLevels,
                 TypeHierarchyDirection Direction, const SymbolIndex *Index,
                 PathRef TUPath) {
  const CXXRecordDecl *CXXRD = findRecordTypeAt(AST, Pos);
  if (!CXXRD)
    return llvm::None;

  bool WantParents = Direction == TypeHierarchyDirection::Parents ||
                     Direction == TypeHierarchyDirection::Both;
  bool WantChildren = Direction == TypeHierarchyDirection::Children ||
                      Direction == TypeHierarchyDirection::Both;

  // If we're looking for children, we're doing the lookup in the index.
  // The index does not store relationships between implicit
  // specializations, so if we have one, use the template pattern instead.
  // Note that this needs to be done before the declToTypeHierarchyItem(),
  // otherwise the type hierarchy item would misleadingly contain the
  // specialization parameters, while the children would involve classes
  // that derive from other specializations of the template.
  if (WantChildren) {
    if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CXXRD))
      CXXRD = CTSD->getTemplateInstantiationPattern();
  }

  Optional<TypeHierarchyItem> Result = declToTypeHierarchyItem(*CXXRD);
  if (!Result)
    return Result;

  if (WantParents) {
    Result->parents.emplace();

    RecursionProtectionSet RPSet;
    fillSuperTypes(*CXXRD, AST.getASTContext(), *Result->parents, RPSet);
  }

  if (WantChildren && ResolveLevels > 0) {
    Result->children.emplace();

    if (Index) {
      if (auto ID = getSymbolID(CXXRD))
        fillSubTypes(ID, *Result->children, Index, ResolveLevels, TUPath);
    }
  }

  return Result;
}

void resolveTypeHierarchy(TypeHierarchyItem &Item, int ResolveLevels,
                          TypeHierarchyDirection Direction,
                          const SymbolIndex *Index) {
  // We only support typeHierarchy/resolve for children, because for parents
  // we ignore ResolveLevels and return all levels of parents eagerly.
  if (Direction == TypeHierarchyDirection::Parents || ResolveLevels == 0)
    return;

  Item.children.emplace();

  if (Index && Item.data) {
    // We store the item's SymbolID in the 'data' field, and the client
    // passes it back to us in typeHierarchy/resolve.
    if (Expected<SymbolID> ID = SymbolID::fromStr(*Item.data)) {
      fillSubTypes(*ID, *Item.children, Index, ResolveLevels, Item.uri.file());
    }
  }
}

std::vector<CallHierarchyItem>
prepareCallHierarchy(ParsedAST &AST, Position Pos, PathRef TUPath) {
  std::vector<CallHierarchyItem> Result;
  const auto &SM = AST.getSourceManager();
  auto Loc = sourceLocationInMainFile(SM, Pos);
  if (!Loc) {
    elog("prepareCallHierarchy failed to convert position to source location: "
         "{0}",
         Loc.takeError());
    return Result;
  }
  for (const NamedDecl *Decl : getDeclAtPosition(AST, *Loc, {})) {
    if (!Decl->isFunctionOrFunctionTemplate())
      continue;
    if (auto CHI = declToCallHierarchyItem(*Decl))
      Result.emplace_back(std::move(*CHI));
  }
  return Result;
}

std::vector<CallHierarchyIncomingCall>
incomingCalls(const CallHierarchyItem &Item, const SymbolIndex *Index) {
  std::vector<CallHierarchyIncomingCall> Results;
  if (!Index || Item.data.empty())
    return Results;
  auto ID = SymbolID::fromStr(Item.data);
  if (!ID) {
    elog("incomingCalls failed to find symbol: {0}", ID.takeError());
    return Results;
  }
  // In this function, we find incoming calls based on the index only.
  // In principle, the AST could have more up-to-date information about
  // occurrences within the current file. However, going from a SymbolID
  // to an AST node isn't cheap, particularly when the declaration isn't
  // in the main file.
  // FIXME: Consider also using AST information when feasible.
  RefsRequest Request;
  Request.IDs.insert(*ID);
  // We could restrict more specifically to calls by introducing a new RefKind,
  // but non-call references (such as address-of-function) can still be
  // interesting as they can indicate indirect calls.
  Request.Filter = RefKind::Reference;
  // Initially store the ranges in a map keyed by SymbolID of the caller.
  // This allows us to group different calls with the same caller
  // into the same CallHierarchyIncomingCall.
  llvm::DenseMap<SymbolID, std::vector<Range>> CallsIn;
  // We can populate the ranges based on a refs request only. As we do so, we
  // also accumulate the container IDs into a lookup request.
  LookupRequest ContainerLookup;
  Index->refs(Request, [&](const Ref &R) {
    auto Loc = indexToLSPLocation(R.Location, Item.uri.file());
    if (!Loc) {
      elog("incomingCalls failed to convert location: {0}", Loc.takeError());
      return;
    }
    auto It = CallsIn.try_emplace(R.Container, std::vector<Range>{}).first;
    It->second.push_back(Loc->range);

    ContainerLookup.IDs.insert(R.Container);
  });
  // Perform the lookup request and combine its results with CallsIn to
  // get complete CallHierarchyIncomingCall objects.
  Index->lookup(ContainerLookup, [&](const Symbol &Caller) {
    auto It = CallsIn.find(Caller.ID);
    assert(It != CallsIn.end());
    if (auto CHI = symbolToCallHierarchyItem(Caller, Item.uri.file()))
      Results.push_back(
          CallHierarchyIncomingCall{std::move(*CHI), std::move(It->second)});
  });
  // Sort results by name of container.
  llvm::sort(Results, [](const CallHierarchyIncomingCall &A,
                         const CallHierarchyIncomingCall &B) {
    return A.from.name < B.from.name;
  });
  return Results;
}

llvm::DenseSet<const Decl *> getNonLocalDeclRefs(ParsedAST &AST,
                                                 const FunctionDecl *FD) {
  if (!FD->hasBody())
    return {};
  llvm::DenseSet<const Decl *> DeclRefs;
  findExplicitReferences(
      FD,
      [&](ReferenceLoc Ref) {
        for (const Decl *D : Ref.Targets) {
          if (!index::isFunctionLocalSymbol(D) && !D->isTemplateParameter() &&
              !Ref.IsDecl)
            DeclRefs.insert(D);
        }
      },
      AST.getHeuristicResolver());
  return DeclRefs;
}

} // namespace clangd
} // namespace clang