1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
//===-- Matchers.h ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// GMock matchers that aren't specific to particular tests.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_TOOLS_EXTRA_UNITTESTS_CLANGD_MATCHERS_H
#define LLVM_CLANG_TOOLS_EXTRA_UNITTESTS_CLANGD_MATCHERS_H
#include "Protocol.h"
#include "gmock/gmock.h"
namespace clang {
namespace clangd {
using ::testing::Matcher;
// EXPECT_IFF expects matcher if condition is true, and Not(matcher) if false.
// This is hard to write as a function, because matchers may be polymorphic.
#define EXPECT_IFF(condition, value, matcher) \
do { \
if (condition) \
EXPECT_THAT(value, matcher); \
else \
EXPECT_THAT(value, ::testing::Not(matcher)); \
} while (0)
// HasSubsequence(m1, m2, ...) matches a vector containing elements that match
// m1, m2 ... in that order.
//
// SubsequenceMatcher implements this once the type of vector is known.
template <typename T>
class SubsequenceMatcher
: public ::testing::MatcherInterface<const std::vector<T> &> {
std::vector<Matcher<T>> Matchers;
public:
SubsequenceMatcher(std::vector<Matcher<T>> M) : Matchers(M) {}
void DescribeTo(std::ostream *OS) const override {
*OS << "Contains the subsequence [";
const char *Sep = "";
for (const auto &M : Matchers) {
*OS << Sep;
M.DescribeTo(OS);
Sep = ", ";
}
*OS << "]";
}
bool MatchAndExplain(const std::vector<T> &V,
::testing::MatchResultListener *L) const override {
std::vector<int> Matches(Matchers.size());
size_t I = 0;
for (size_t J = 0; I < Matchers.size() && J < V.size(); ++J)
if (Matchers[I].Matches(V[J]))
Matches[I++] = J;
if (I == Matchers.size()) // We exhausted all matchers.
return true;
if (L->IsInterested()) {
*L << "\n Matched:";
for (size_t K = 0; K < I; ++K) {
*L << "\n\t";
Matchers[K].DescribeTo(L->stream());
*L << " ==> " << ::testing::PrintToString(V[Matches[K]]);
}
*L << "\n\t";
Matchers[I].DescribeTo(L->stream());
*L << " ==> no subsequent match";
}
return false;
}
};
// PolySubsequenceMatcher implements a "polymorphic" SubsequenceMatcher.
// It captures the types of the element matchers, and can be converted to
// Matcher<vector<T>> if each matcher can be converted to Matcher<T>.
// This allows HasSubsequence() to accept polymorphic matchers like Not().
template <typename... M> class PolySubsequenceMatcher {
std::tuple<M...> Matchers;
public:
PolySubsequenceMatcher(M &&... Args)
: Matchers(std::make_tuple(std::forward<M>(Args)...)) {}
template <typename T> operator Matcher<const std::vector<T> &>() const {
return ::testing::MakeMatcher(new SubsequenceMatcher<T>(
TypedMatchers<T>(std::index_sequence_for<M...>{})));
}
private:
template <typename T, size_t... I>
std::vector<Matcher<T>> TypedMatchers(std::index_sequence<I...>) const {
return {std::get<I>(Matchers)...};
}
};
// HasSubsequence(m1, m2, ...) matches a vector containing elements that match
// m1, m2 ... in that order.
// The real implementation is in SubsequenceMatcher.
template <typename... Args>
PolySubsequenceMatcher<Args...> HasSubsequence(Args &&... M) {
return PolySubsequenceMatcher<Args...>(std::forward<Args>(M)...);
}
// EXPECT_ERROR seems like a pretty generic name, make sure it's not defined
// already.
#ifdef EXPECT_ERROR
#error "Refusing to redefine EXPECT_ERROR"
#endif
// Consumes llvm::Expected<T>, checks it contains an error and marks it as
// handled.
#define EXPECT_ERROR(expectedValue) \
do { \
auto &&ComputedValue = (expectedValue); \
if (ComputedValue) { \
ADD_FAILURE() << "expected an error from " << #expectedValue \
<< " but got " \
<< ::testing::PrintToString(*ComputedValue); \
break; \
} \
llvm::consumeError(ComputedValue.takeError()); \
} while (false)
// Implements the HasValue(m) matcher for matching an Optional whose
// value matches matcher m.
template <typename InnerMatcher> class OptionalMatcher {
public:
explicit OptionalMatcher(const InnerMatcher &matcher) : matcher_(matcher) {}
OptionalMatcher(const OptionalMatcher&) = default;
OptionalMatcher &operator=(const OptionalMatcher&) = delete;
// This type conversion operator template allows Optional(m) to be
// used as a matcher for any Optional type whose value type is
// compatible with the inner matcher.
//
// The reason we do this instead of relying on
// MakePolymorphicMatcher() is that the latter is not flexible
// enough for implementing the DescribeTo() method of Optional().
template <typename Optional> operator Matcher<Optional>() const {
return MakeMatcher(new Impl<Optional>(matcher_));
}
private:
// The monomorphic implementation that works for a particular optional type.
template <typename Optional>
class Impl : public ::testing::MatcherInterface<Optional> {
public:
using Value = typename std::remove_const<
typename std::remove_reference<Optional>::type>::type::value_type;
explicit Impl(const InnerMatcher &matcher)
: matcher_(::testing::MatcherCast<const Value &>(matcher)) {}
Impl(const Impl&) = default;
Impl &operator=(const Impl&) = delete;
virtual void DescribeTo(::std::ostream *os) const {
*os << "has a value that ";
matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream *os) const {
*os << "does not have a value that ";
matcher_.DescribeTo(os);
}
virtual bool
MatchAndExplain(Optional optional,
::testing::MatchResultListener *listener) const {
if (!optional.hasValue())
return false;
*listener << "which has a value ";
return MatchPrintAndExplain(*optional, matcher_, listener);
}
private:
const Matcher<const Value &> matcher_;
};
const InnerMatcher matcher_;
};
// Creates a matcher that matches an Optional that has a value
// that matches inner_matcher.
template <typename InnerMatcher>
inline OptionalMatcher<InnerMatcher>
HasValue(const InnerMatcher &inner_matcher) {
return OptionalMatcher<InnerMatcher>(inner_matcher);
}
} // namespace clangd
} // namespace clang
#endif
|