File: ThreadingTests.cpp

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (146 lines) | stat: -rw-r--r-- 4,510 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
//===-- ThreadingTests.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "support/Threading.h"
#include "llvm/ADT/DenseMap.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <chrono>
#include <mutex>

namespace clang {
namespace clangd {
class ThreadingTest : public ::testing::Test {};

TEST_F(ThreadingTest, TaskRunner) {
  const int TasksCnt = 100;
  // This should be const, but MSVC does not allow to use const vars in lambdas
  // without capture. On the other hand, clang gives a warning that capture of
  // const var is not required.
  // Making it non-const makes both compilers happy.
  int IncrementsPerTask = 1000;

  std::mutex Mutex;
  int Counter(0); /* GUARDED_BY(Mutex) */
  {
    AsyncTaskRunner Tasks;
    auto scheduleIncrements = [&]() {
      for (int TaskI = 0; TaskI < TasksCnt; ++TaskI) {
        Tasks.runAsync("task", [&Counter, &Mutex, IncrementsPerTask]() {
          for (int Increment = 0; Increment < IncrementsPerTask; ++Increment) {
            std::lock_guard<std::mutex> Lock(Mutex);
            ++Counter;
          }
        });
      }
    };

    {
      // Make sure runAsync is not running tasks synchronously on the same
      // thread by locking the Mutex used for increments.
      std::lock_guard<std::mutex> Lock(Mutex);
      scheduleIncrements();
    }

    Tasks.wait();
    {
      std::lock_guard<std::mutex> Lock(Mutex);
      ASSERT_EQ(Counter, TasksCnt * IncrementsPerTask);
    }

    {
      std::lock_guard<std::mutex> Lock(Mutex);
      Counter = 0;
      scheduleIncrements();
    }
  }
  // Check that destructor has waited for tasks to finish.
  std::lock_guard<std::mutex> Lock(Mutex);
  ASSERT_EQ(Counter, TasksCnt * IncrementsPerTask);
}

TEST_F(ThreadingTest, Memoize) {
  const unsigned NumThreads = 5;
  const unsigned NumKeys = 100;
  const unsigned NumIterations = 100;

  Memoize<llvm::DenseMap<int, int>> Cache;
  std::atomic<unsigned> ComputeCount(0);
  std::atomic<int> ComputeResult[NumKeys];
  std::fill(std::begin(ComputeResult), std::end(ComputeResult), -1);

  AsyncTaskRunner Tasks;
  for (unsigned I = 0; I < NumThreads; ++I)
    Tasks.runAsync("worker" + std::to_string(I), [&] {
      for (unsigned J = 0; J < NumIterations; J++)
        for (unsigned K = 0; K < NumKeys; K++) {
          int Result = Cache.get(K, [&] { return ++ComputeCount; });
          EXPECT_THAT(ComputeResult[K].exchange(Result),
                      testing::AnyOf(-1, Result))
              << "Got inconsistent results from memoize";
        }
    });
  Tasks.wait();
  EXPECT_GE(ComputeCount, NumKeys) << "Computed each key once";
  EXPECT_LE(ComputeCount, NumThreads * NumKeys)
      << "Worst case, computed each key in every thread";
  for (int Result : ComputeResult)
    EXPECT_GT(Result, 0) << "All results in expected domain";
}

TEST_F(ThreadingTest, MemoizeDeterministic) {
  Memoize<llvm::DenseMap<int, char>> Cache;

  // Spawn two parallel computations, A and B.
  // Force concurrency: neither can finish until both have started.
  // Verify that cache returns consistent results.
  AsyncTaskRunner Tasks;
  std::atomic<char> ValueA(0), ValueB(0);
  Notification ReleaseA, ReleaseB;
  Tasks.runAsync("A", [&] {
    ValueA = Cache.get(0, [&] {
      ReleaseB.notify();
      ReleaseA.wait();
      return 'A';
    });
  });
  Tasks.runAsync("A", [&] {
    ValueB = Cache.get(0, [&] {
      ReleaseA.notify();
      ReleaseB.wait();
      return 'B';
    });
  });
  Tasks.wait();

  ASSERT_EQ(ValueA, ValueB);
  ASSERT_THAT(ValueA.load(), testing::AnyOf('A', 'B'));
}

// It's hard to write a real test of this class, std::chrono is awkward to mock.
// But test some degenerate cases at least.
TEST(PeriodicThrottlerTest, Minimal) {
  PeriodicThrottler Once(std::chrono::hours(24));
  EXPECT_TRUE(Once());
  EXPECT_FALSE(Once());
  EXPECT_FALSE(Once());

  PeriodicThrottler Later(std::chrono::hours(24),
                          /*Delay=*/std::chrono::hours(24));
  EXPECT_FALSE(Later());
  EXPECT_FALSE(Later());
  EXPECT_FALSE(Later());

  PeriodicThrottler Always(std::chrono::seconds(0));
  EXPECT_TRUE(Always());
  EXPECT_TRUE(Always());
  EXPECT_TRUE(Always());
}

} // namespace clangd
} // namespace clang