1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
// RUN: %clang_analyze_cc1 -analyzer-checker=core,debug.ExprInspection -verify -analyzer-config eagerly-assume=false %s
#define UINT_MAX (~0U)
#define INT_MAX (int)(UINT_MAX & (UINT_MAX >> 1))
#define INT_MIN (int)(UINT_MAX & ~(UINT_MAX >> 1))
void clang_analyzer_eval(int);
// There should be no warnings unless otherwise indicated.
void testComparisons (int a) {
// Sema can already catch the simple comparison a==a,
// since that's usually a logic error (and not path-dependent).
int b = a;
clang_analyzer_eval(b == a); // expected-warning{{TRUE}}
clang_analyzer_eval(b >= a); // expected-warning{{TRUE}}
clang_analyzer_eval(b <= a); // expected-warning{{TRUE}}
clang_analyzer_eval(b != a); // expected-warning{{FALSE}}
clang_analyzer_eval(b > a); // expected-warning{{FALSE}}
clang_analyzer_eval(b < a); // expected-warning{{FALSE}}
}
void testSelfOperations (int a) {
clang_analyzer_eval((a|a) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a&a) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a^a) == 0); // expected-warning{{TRUE}}
clang_analyzer_eval((a-a) == 0); // expected-warning{{TRUE}}
}
void testIdempotent (int a) {
clang_analyzer_eval((a*1) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a/1) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a+0) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a-0) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a<<0) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a>>0) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a^0) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a&(~0)) == a); // expected-warning{{TRUE}}
clang_analyzer_eval((a|0) == a); // expected-warning{{TRUE}}
}
void testReductionToConstant (int a) {
clang_analyzer_eval((a*0) == 0); // expected-warning{{TRUE}}
clang_analyzer_eval((a&0) == 0); // expected-warning{{TRUE}}
clang_analyzer_eval((a|(~0)) == (~0)); // expected-warning{{TRUE}}
}
void testSymmetricIntSymOperations (int a) {
clang_analyzer_eval((2+a) == (a+2)); // expected-warning{{TRUE}}
clang_analyzer_eval((2*a) == (a*2)); // expected-warning{{TRUE}}
clang_analyzer_eval((2&a) == (a&2)); // expected-warning{{TRUE}}
clang_analyzer_eval((2^a) == (a^2)); // expected-warning{{TRUE}}
clang_analyzer_eval((2|a) == (a|2)); // expected-warning{{TRUE}}
}
void testAsymmetricIntSymOperations (int a) {
clang_analyzer_eval(((~0) >> a) == (~0)); // expected-warning{{TRUE}}
clang_analyzer_eval((0 >> a) == 0); // expected-warning{{TRUE}}
clang_analyzer_eval((0 << a) == 0); // expected-warning{{TRUE}}
// Unsigned right shift shifts in zeroes.
clang_analyzer_eval(((~0U) >> a) != (~0U)); // expected-warning{{UNKNOWN}}
}
void testLocations (char *a) {
char *b = a;
clang_analyzer_eval(b == a); // expected-warning{{TRUE}}
clang_analyzer_eval(b >= a); // expected-warning{{TRUE}}
clang_analyzer_eval(b <= a); // expected-warning{{TRUE}}
clang_analyzer_eval(b != a); // expected-warning{{FALSE}}
clang_analyzer_eval(b > a); // expected-warning{{FALSE}}
clang_analyzer_eval(b < a); // expected-warning{{FALSE}}
}
void testMixedTypeComparisons (char a, unsigned long b) {
if (a != 0) return;
if (b != 0x100) return;
clang_analyzer_eval(a <= b); // expected-warning{{TRUE}}
clang_analyzer_eval(b >= a); // expected-warning{{TRUE}}
clang_analyzer_eval(a != b); // expected-warning{{TRUE}}
}
void testBitwiseRules(unsigned int a, int b, int c) {
clang_analyzer_eval((a | 1) >= 1); // expected-warning{{TRUE}}
clang_analyzer_eval((a | -1) >= -1); // expected-warning{{TRUE}}
clang_analyzer_eval((a | 2) >= 2); // expected-warning{{TRUE}}
clang_analyzer_eval((a | 5) >= 5); // expected-warning{{TRUE}}
clang_analyzer_eval((a | 10) >= 10); // expected-warning{{TRUE}}
// Argument order should not influence this
clang_analyzer_eval((1 | a) >= 1); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 1) <= 1); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 1) >= 0); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 2) <= 2); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 5) <= 5); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 10) <= 10); // expected-warning{{TRUE}}
clang_analyzer_eval((a & -10) <= 10); // expected-warning{{UNKNOWN}}
// Again, check for different argument order.
clang_analyzer_eval((1 & a) <= 1); // expected-warning{{TRUE}}
unsigned int d = a;
d |= 1;
clang_analyzer_eval((d | 0) == 0); // expected-warning{{FALSE}}
// Rules don't apply to signed typed, as the values might be negative.
clang_analyzer_eval((b | 1) > 0); // expected-warning{{UNKNOWN}}
// Even for signed values, bitwise OR with a non-zero is always non-zero.
clang_analyzer_eval((b | 1) == 0); // expected-warning{{FALSE}}
clang_analyzer_eval((b | -2) == 0); // expected-warning{{FALSE}}
clang_analyzer_eval((b | 10) == 0); // expected-warning{{FALSE}}
clang_analyzer_eval((b | 0) == 0); // expected-warning{{UNKNOWN}}
clang_analyzer_eval((b | -2) >= 0); // expected-warning{{FALSE}}
// Check that we can operate with negative ranges
if (b < 0) {
clang_analyzer_eval((b | -1) == -1); // expected-warning{{TRUE}}
clang_analyzer_eval((b | -10) >= -10); // expected-warning{{TRUE}}
clang_analyzer_eval((b & 0) == 0); // expected-warning{{TRUE}}
clang_analyzer_eval((b & -10) <= -10); // expected-warning{{TRUE}}
clang_analyzer_eval((b & 5) >= 0); // expected-warning{{TRUE}}
int e = (b | -5);
clang_analyzer_eval(e >= -5 && e <= -1); // expected-warning{{TRUE}}
if (b < -20) {
clang_analyzer_eval((b | e) >= -5); // expected-warning{{TRUE}}
clang_analyzer_eval((b & -10) < -20); // expected-warning{{TRUE}}
clang_analyzer_eval((b & e) < -20); // expected-warning{{TRUE}}
clang_analyzer_eval((b & -30) <= -30); // expected-warning{{TRUE}}
if (c >= -30 && c <= -10) {
clang_analyzer_eval((b & c) <= -20); // expected-warning{{TRUE}}
}
}
if (a <= 40) {
int g = (int)a & b;
clang_analyzer_eval(g <= 40 && g >= 0); // expected-warning{{TRUE}}
}
// Check that we can reason about the result even if know nothing
// about one of the operands.
clang_analyzer_eval((b | c) != 0); // expected-warning{{TRUE}}
}
if (a <= 30 && b >= 10 && c >= 20) {
// Check that we can reason about non-constant operands.
clang_analyzer_eval((b | c) >= 20); // expected-warning{{TRUE}}
// Check that we can reason about the resulting range even if
// the types are not the same, but we still can convert operand
// ranges.
clang_analyzer_eval((a | b) >= 10); // expected-warning{{TRUE}}
clang_analyzer_eval((a & b) <= 30); // expected-warning{{TRUE}}
if (b <= 20) {
clang_analyzer_eval((a & b) <= 20); // expected-warning{{TRUE}}
}
}
// Check that dynamically computed constants also work.
unsigned int constant = 1 << 3;
unsigned int f = a | constant;
clang_analyzer_eval(f >= constant); // expected-warning{{TRUE}}
// Check that nested expressions also work.
clang_analyzer_eval(((a | 10) | 5) >= 10); // expected-warning{{TRUE}}
if (a < 10) {
clang_analyzer_eval((a | 20) >= 20); // expected-warning{{TRUE}}
}
if (a > 10) {
clang_analyzer_eval((a & 1) <= 1); // expected-warning{{TRUE}}
}
}
unsigned reset();
void testCombinedSources(unsigned a, unsigned b) {
if (b >= 10 && (a | b) <= 30) {
// Check that we can merge constraints from (a | b), a, and b.
// Because of the order of assumptions, we already know that (a | b) is [10, 30].
clang_analyzer_eval((a | b) >= 10 && (a | b) <= 30); // expected-warning{{TRUE}}
}
a = reset();
b = reset();
if ((a | b) <= 30 && b >= 10) {
// Check that we can merge constraints from (a | b), a, and b.
// At this point, we know that (a | b) is [0, 30], but the knowledge
// of b >= 10 added later can help us to refine it and change it to [10, 30].
clang_analyzer_eval(10 <= (a | b) && (a | b) <= 30); // expected-warning{{TRUE}}
}
a = reset();
b = reset();
unsigned c = (a | b) & (a != b);
if (c <= 40 && a == b) {
// Even though we have a directo constraint for c [0, 40],
// we can get a more precise range by looking at the expression itself.
clang_analyzer_eval(c == 0); // expected-warning{{TRUE}}
}
}
void testRemainderRules(unsigned int a, unsigned int b, int c, int d) {
// Check that we know that remainder of zero divided by any number is still 0.
clang_analyzer_eval((0 % c) == 0); // expected-warning{{TRUE}}
clang_analyzer_eval((10 % a) <= 10); // expected-warning{{TRUE}}
if (a <= 30 && b <= 50) {
clang_analyzer_eval((40 % a) < 30); // expected-warning{{TRUE}}
clang_analyzer_eval((a % b) < 50); // expected-warning{{TRUE}}
clang_analyzer_eval((b % a) < 30); // expected-warning{{TRUE}}
if (a >= 10) {
// Even though it seems like a valid assumption, it is not.
// Check that we are not making this mistake.
clang_analyzer_eval((a % b) >= 10); // expected-warning{{UNKNOWN}}
// Check that we can we can infer when remainder is equal
// to the dividend.
clang_analyzer_eval((4 % a) == 4); // expected-warning{{TRUE}}
if (b < 7) {
clang_analyzer_eval((b % a) < 7); // expected-warning{{TRUE}}
}
}
}
if (c > -10) {
clang_analyzer_eval((d % c) < INT_MAX); // expected-warning{{TRUE}}
clang_analyzer_eval((d % c) > INT_MIN + 1); // expected-warning{{TRUE}}
}
// Check that we can reason about signed integers when they are
// known to be positive.
if (c >= 10 && c <= 30 && d >= 20 && d <= 50) {
clang_analyzer_eval((5 % c) == 5); // expected-warning{{TRUE}}
clang_analyzer_eval((c % d) <= 30); // expected-warning{{TRUE}}
clang_analyzer_eval((c % d) >= 0); // expected-warning{{TRUE}}
clang_analyzer_eval((d % c) < 30); // expected-warning{{TRUE}}
clang_analyzer_eval((d % c) >= 0); // expected-warning{{TRUE}}
}
if (c >= -30 && c <= -10 && d >= -20 && d <= 50) {
// Test positive LHS with negative RHS.
clang_analyzer_eval((40 % c) < 30); // expected-warning{{TRUE}}
clang_analyzer_eval((40 % c) > -30); // expected-warning{{TRUE}}
// Test negative LHS with possibly negative RHS.
clang_analyzer_eval((-10 % d) < 50); // expected-warning{{TRUE}}
clang_analyzer_eval((-20 % d) > -50); // expected-warning{{TRUE}}
// Check that we don't make wrong assumptions
clang_analyzer_eval((-20 % d) > -20); // expected-warning{{UNKNOWN}}
// Check that we can reason about negative ranges...
clang_analyzer_eval((c % d) < 50); // expected-warning{{TRUE}}
/// ...both ways
clang_analyzer_eval((d % c) < 30); // expected-warning{{TRUE}}
if (a <= 10) {
// Result is unsigned. This means that 'c' is casted to unsigned.
// We don't want to reason about ranges changing boundaries with
// conversions.
clang_analyzer_eval((a % c) < 30); // expected-warning{{UNKNOWN}}
}
}
// Check that we work correctly when minimal unsigned value from a range is
// equal to the signed minimum for the same bit width.
unsigned int x = INT_MIN;
if (a >= x && a <= x + 10) {
clang_analyzer_eval((b % a) < x + 10); // expected-warning{{TRUE}}
}
}
|