1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
// expected-no-diagnostics
// Example bind implementation from the variadic templates proposal,
// ISO C++ committee document number N2080.
// Helper type traits
template<typename T>
struct add_reference {
typedef T &type;
};
template<typename T>
struct add_reference<T&> {
typedef T &type;
};
template<typename T>
struct add_const_reference {
typedef T const &type;
};
template<typename T>
struct add_const_reference<T&> {
typedef T &type;
};
template<typename T, typename U>
struct is_same {
static const bool value = false;
};
template<typename T>
struct is_same<T, T> {
static const bool value = true;
};
template<typename T>
class reference_wrapper {
T *ptr;
public:
reference_wrapper(T& t) : ptr(&t) { }
operator T&() const { return *ptr; }
};
template<typename T> reference_wrapper<T> ref(T& t) {
return reference_wrapper<T>(t);
}
template<typename T> reference_wrapper<const T> cref(const T& t) {
return reference_wrapper<const T>(t);
}
template<typename... Values> class tuple;
// Basis case: zero-length tuple
template<> class tuple<> { };
template<typename Head, typename... Tail>
class tuple<Head, Tail...> : private tuple<Tail...> {
typedef tuple<Tail...> inherited;
public:
tuple() { }
// implicit copy-constructor is okay
// Construct tuple from separate arguments.
tuple(typename add_const_reference<Head>::type v,
typename add_const_reference<Tail>::type... vtail)
: m_head(v), inherited(vtail...) { }
// Construct tuple from another tuple.
template<typename... VValues> tuple(const tuple<VValues...>& other)
: m_head(other.head()), inherited(other.tail()) { }
template<typename... VValues> tuple&
operator=(const tuple<VValues...>& other) {
m_head = other.head();
tail() = other.tail();
return *this;
}
typename add_reference<Head>::type head() { return m_head; }
typename add_reference<const Head>::type head() const { return m_head; }
inherited& tail() { return *this; }
const inherited& tail() const { return *this; }
protected:
Head m_head;
};
// Creation functions
template<typename T>
struct make_tuple_result {
typedef T type;
};
template<typename T>
struct make_tuple_result<reference_wrapper<T> > {
typedef T& type;
};
template<typename... Values>
tuple<typename make_tuple_result<Values>::type...>
make_tuple(const Values&... values) {
return tuple<typename make_tuple_result<Values>::type...>(values...);
}
template<typename... Values>
tuple<Values&...> tie(Values&... values) {
return tuple<Values&...>(values...);
}
// Helper classes
template<typename Tuple> struct tuple_size;
template<typename... Values> struct tuple_size<tuple<Values...> > {
static const int value = sizeof...(Values);
};
template<int I, typename Tuple> struct tuple_element;
template<int I, typename Head, typename... Tail>
struct tuple_element<I, tuple<Head, Tail...> > {
typedef typename tuple_element<I-1, tuple<Tail...> >::type type;
};
template<typename Head, typename... Tail>
struct tuple_element<0, tuple<Head, Tail...> > {
typedef Head type;
};
// Element access
template<int I, typename Tuple> class get_impl;
template<int I, typename Head, typename... Values>
class get_impl<I, tuple<Head, Values...> > {
typedef typename tuple_element<I-1, tuple<Values...> >::type Element;
typedef typename add_reference<Element>::type RJ;
typedef typename add_const_reference<Element>::type PJ;
typedef get_impl<I-1, tuple<Values...> > Next;
public:
static RJ get(tuple<Head, Values...>& t) { return Next::get(t.tail()); }
static PJ get(const tuple<Head, Values...>& t) { return Next::get(t.tail()); }
};
template<typename Head, typename... Values>
class get_impl<0, tuple<Head, Values...> > {
typedef typename add_reference<Head>::type RJ;
typedef typename add_const_reference<Head>::type PJ;
public:
static RJ get(tuple<Head, Values...>& t) { return t.head(); }
static PJ get(const tuple<Head, Values...>& t) { return t.head(); }
};
template<int I, typename... Values> typename add_reference<
typename tuple_element<I, tuple<Values...> >::type >::type
get(tuple<Values...>& t) {
return get_impl<I, tuple<Values...> >::get(t);
}
template<int I, typename... Values> typename add_const_reference<
typename tuple_element<I, tuple<Values...> >::type >::type
get(const tuple<Values...>& t) {
return get_impl<I, tuple<Values...> >::get(t);
}
// Relational operators
inline bool operator==(const tuple<>&, const tuple<>&) { return true; }
template<typename T, typename... TTail, typename U, typename... UTail>
bool operator==(const tuple<T, TTail...>& t, const tuple<U, UTail...>& u) {
return t.head() == u.head() && t.tail() == u.tail();
}
template<typename... TValues, typename... UValues>
bool operator!=(const tuple<TValues...>& t, const tuple<UValues...>& u) {
return !(t == u);
}
inline bool operator<(const tuple<>&, const tuple<>&) { return false; }
template<typename T, typename... TTail, typename U, typename... UTail>
bool operator<(const tuple<T, TTail...>& t, const tuple<U, UTail...>& u) {
return (t.head() < u.head() || (!(t.head() < u.head()) && t.tail() < u.tail()));
}
template<typename... TValues, typename... UValues>
bool operator>(const tuple<TValues...>& t, const tuple<UValues...>& u) {
return u < t;
}
template<typename... TValues, typename... UValues>
bool operator<=(const tuple<TValues...>& t, const tuple<UValues...>& u) {
return !(u < t);
}
template<typename... TValues, typename... UValues>
bool operator>=(const tuple<TValues...>& t, const tuple<UValues...>& u) {
return !(t < u);
}
// make_indices helper
template<int...> struct int_tuple {};
// make_indexes impl is a helper for make_indexes
template<int I, typename IntTuple, typename... Types> struct make_indexes_impl;
template<int I, int... Indexes, typename T, typename... Types>
struct make_indexes_impl<I, int_tuple<Indexes...>, T, Types...> {
typedef typename make_indexes_impl<I+1, int_tuple<Indexes..., I>, Types...>::type type;
};
template<int I, int... Indexes>
struct make_indexes_impl<I, int_tuple<Indexes...> > {
typedef int_tuple<Indexes...> type;
};
template<typename... Types>
struct make_indexes : make_indexes_impl<0, int_tuple<>, Types...> {
};
// Bind
template<typename T> struct is_bind_expression {
static const bool value = false;
};
template<typename T> struct is_placeholder {
static const int value = 0;
};
template<typename F, typename... BoundArgs> class bound_functor {
typedef typename make_indexes<BoundArgs...>::type indexes;
public:
typedef typename F::result_type result_type;
explicit bound_functor(const F& f, const BoundArgs&... bound_args)
: f(f), bound_args(bound_args...) { } template<typename... Args>
typename F::result_type operator()(Args&... args);
private: F f;
tuple<BoundArgs...> bound_args;
};
template<typename F, typename... BoundArgs>
inline bound_functor<F, BoundArgs...> bind(const F& f, const BoundArgs&... bound_args) {
return bound_functor<F, BoundArgs...>(f, bound_args...);
}
template<typename F, typename ...BoundArgs>
struct is_bind_expression<bound_functor<F, BoundArgs...> > {
static const bool value = true;
};
// enable_if helper
template<bool Cond, typename T = void>
struct enable_if;
template<typename T>
struct enable_if<true, T> {
typedef T type;
};
template<typename T>
struct enable_if<false, T> { };
// safe_tuple_element helper
template<int I, typename Tuple, typename = void>
struct safe_tuple_element { };
template<int I, typename... Values>
struct safe_tuple_element<I, tuple<Values...>,
typename enable_if<(I >= 0 && I < tuple_size<tuple<Values...> >::value)>::type> {
typedef typename tuple_element<I, tuple<Values...> >::type type;
};
// mu
template<typename Bound, typename... Args>
inline typename safe_tuple_element<is_placeholder<Bound>::value -1,
tuple<Args...> >::type
mu(Bound& bound_arg, const tuple<Args&...>& args) {
return get<is_placeholder<Bound>::value-1>(args);
}
template<typename T, typename... Args>
inline T& mu(reference_wrapper<T>& bound_arg, const tuple<Args&...>&) {
return bound_arg.get();
}
template<typename F, int... Indexes, typename... Args>
inline typename F::result_type
unwrap_and_forward(F& f, int_tuple<Indexes...>, const tuple<Args&...>& args) {
return f(get<Indexes>(args)...);
}
template<typename Bound, typename... Args>
inline typename enable_if<is_bind_expression<Bound>::value,
typename Bound::result_type>::type
mu(Bound& bound_arg, const tuple<Args&...>& args) {
typedef typename make_indexes<Args...>::type Indexes;
return unwrap_and_forward(bound_arg, Indexes(), args);
}
template<typename T>
struct is_reference_wrapper {
static const bool value = false;
};
template<typename T>
struct is_reference_wrapper<reference_wrapper<T>> {
static const bool value = true;
};
template<typename Bound, typename... Args>
inline typename enable_if<(!is_bind_expression<Bound>::value
&& !is_placeholder<Bound>::value
&& !is_reference_wrapper<Bound>::value),
Bound&>::type
mu(Bound& bound_arg, const tuple<Args&...>&) {
return bound_arg;
}
template<typename F, typename... BoundArgs, int... Indexes, typename... Args>
typename F::result_type apply_functor(F& f, tuple<BoundArgs...>& bound_args,
int_tuple<Indexes...>,
const tuple<Args&...>& args) {
return f(mu(get<Indexes>(bound_args), args)...);
}
template<typename F, typename... BoundArgs>
template<typename... Args>
typename F::result_type bound_functor<F, BoundArgs...>::operator()(Args&... args) {
return apply_functor(f, bound_args, indexes(), tie(args...));
}
template<int N> struct placeholder { };
template<int N>
struct is_placeholder<placeholder<N>> {
static const int value = N;
};
template<typename T>
struct plus {
typedef T result_type;
T operator()(T x, T y) { return x + y; }
};
placeholder<1> _1;
// Test bind
void test_bind() {
int x = 17;
int y = 25;
bind(plus<int>(), x, _1)(y);
}
|