| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 
 | //===-- lib/Evaluate/call.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/call.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/idioms.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/tools.h"
#include "flang/Semantics/symbol.h"
namespace Fortran::evaluate {
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(ActualArgument)
ActualArgument::ActualArgument(Expr<SomeType> &&x) : u_{std::move(x)} {}
ActualArgument::ActualArgument(common::CopyableIndirection<Expr<SomeType>> &&v)
    : u_{std::move(v)} {}
ActualArgument::ActualArgument(AssumedType x) : u_{x} {}
ActualArgument::ActualArgument(common::Label x) : u_{x} {}
ActualArgument::~ActualArgument() {}
ActualArgument::AssumedType::AssumedType(const Symbol &symbol)
    : symbol_{symbol} {
  const semantics::DeclTypeSpec *type{symbol.GetType()};
  CHECK(type && type->category() == semantics::DeclTypeSpec::TypeStar);
}
int ActualArgument::AssumedType::Rank() const { return symbol_->Rank(); }
ActualArgument &ActualArgument::operator=(Expr<SomeType> &&expr) {
  u_ = std::move(expr);
  return *this;
}
std::optional<DynamicType> ActualArgument::GetType() const {
  if (const Expr<SomeType> *expr{UnwrapExpr()}) {
    return expr->GetType();
  } else if (std::holds_alternative<AssumedType>(u_)) {
    return DynamicType::AssumedType();
  } else {
    return std::nullopt;
  }
}
int ActualArgument::Rank() const {
  if (const Expr<SomeType> *expr{UnwrapExpr()}) {
    return expr->Rank();
  } else {
    return std::get<AssumedType>(u_).Rank();
  }
}
bool ActualArgument::operator==(const ActualArgument &that) const {
  return keyword_ == that.keyword_ && isPassedObject_ == that.isPassedObject_ &&
      u_ == that.u_;
}
void ActualArgument::Parenthesize() {
  u_ = evaluate::Parenthesize(std::move(DEREF(UnwrapExpr())));
}
SpecificIntrinsic::SpecificIntrinsic(
    IntrinsicProcedure n, characteristics::Procedure &&chars)
    : name{n}, characteristics{
                   new characteristics::Procedure{std::move(chars)}} {}
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(SpecificIntrinsic)
SpecificIntrinsic::~SpecificIntrinsic() {}
bool SpecificIntrinsic::operator==(const SpecificIntrinsic &that) const {
  return name == that.name && characteristics == that.characteristics;
}
ProcedureDesignator::ProcedureDesignator(Component &&c)
    : u{common::CopyableIndirection<Component>::Make(std::move(c))} {}
bool ProcedureDesignator::operator==(const ProcedureDesignator &that) const {
  return u == that.u;
}
std::optional<DynamicType> ProcedureDesignator::GetType() const {
  if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&u)}) {
    if (const auto &result{intrinsic->characteristics.value().functionResult}) {
      if (const auto *typeAndShape{result->GetTypeAndShape()}) {
        return typeAndShape->type();
      }
    }
  } else {
    return DynamicType::From(GetSymbol());
  }
  return std::nullopt;
}
int ProcedureDesignator::Rank() const {
  if (const Symbol * symbol{GetSymbol()}) {
    // Subtle: will be zero for functions returning procedure pointers
    return symbol->Rank();
  }
  if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&u)}) {
    if (const auto &result{intrinsic->characteristics.value().functionResult}) {
      if (const auto *typeAndShape{result->GetTypeAndShape()}) {
        CHECK(!typeAndShape->attrs().test(
            characteristics::TypeAndShape::Attr::AssumedRank));
        return typeAndShape->Rank();
      }
      // Otherwise, intrinsic returns a procedure pointer (e.g. NULL(MOLD=pptr))
    }
  }
  return 0;
}
const Symbol *ProcedureDesignator::GetInterfaceSymbol() const {
  if (const Symbol * symbol{GetSymbol()}) {
    const Symbol &ultimate{symbol->GetUltimate()};
    if (const auto *proc{ultimate.detailsIf<semantics::ProcEntityDetails>()}) {
      return proc->interface().symbol();
    } else if (const auto *binding{
                   ultimate.detailsIf<semantics::ProcBindingDetails>()}) {
      return &binding->symbol();
    }
  }
  return nullptr;
}
bool ProcedureDesignator::IsElemental() const {
  if (const Symbol * interface{GetInterfaceSymbol()}) {
    return interface->attrs().test(semantics::Attr::ELEMENTAL);
  } else if (const Symbol * symbol{GetSymbol()}) {
    return symbol->attrs().test(semantics::Attr::ELEMENTAL);
  } else if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&u)}) {
    return intrinsic->characteristics.value().attrs.test(
        characteristics::Procedure::Attr::Elemental);
  } else {
    DIE("ProcedureDesignator::IsElemental(): no case");
  }
  return false;
}
const SpecificIntrinsic *ProcedureDesignator::GetSpecificIntrinsic() const {
  return std::get_if<SpecificIntrinsic>(&u);
}
const Component *ProcedureDesignator::GetComponent() const {
  if (auto *c{std::get_if<common::CopyableIndirection<Component>>(&u)}) {
    return &c->value();
  } else {
    return nullptr;
  }
}
const Symbol *ProcedureDesignator::GetSymbol() const {
  return std::visit(common::visitors{
                        [](SymbolRef symbol) { return &*symbol; },
                        [](const common::CopyableIndirection<Component> &c) {
                          return &c.value().GetLastSymbol();
                        },
                        [](const auto &) -> const Symbol * { return nullptr; },
                    },
      u);
}
std::string ProcedureDesignator::GetName() const {
  return std::visit(
      common::visitors{
          [](const SpecificIntrinsic &i) { return i.name; },
          [](const Symbol &symbol) { return symbol.name().ToString(); },
          [](const common::CopyableIndirection<Component> &c) {
            return c.value().GetLastSymbol().name().ToString();
          },
      },
      u);
}
std::optional<Expr<SubscriptInteger>> ProcedureRef::LEN() const {
  if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc_.u)}) {
    if (intrinsic->name == "repeat") {
      // LEN(REPEAT(ch,n)) == LEN(ch) * n
      CHECK(arguments_.size() == 2);
      const auto *stringArg{
          UnwrapExpr<Expr<SomeCharacter>>(arguments_[0].value())};
      const auto *nCopiesArg{
          UnwrapExpr<Expr<SomeInteger>>(arguments_[1].value())};
      CHECK(stringArg && nCopiesArg);
      if (auto stringLen{stringArg->LEN()}) {
        auto converted{ConvertTo(*stringLen, common::Clone(*nCopiesArg))};
        return *std::move(stringLen) * std::move(converted);
      }
    }
    // Some other cases (e.g., LEN(CHAR(...))) are handled in
    // ProcedureDesignator::LEN() because they're independent of the
    // lengths of the actual arguments.
  }
  return proc_.LEN();
}
int ProcedureRef::Rank() const {
  if (IsElemental()) {
    for (const auto &arg : arguments_) {
      if (arg) {
        if (int rank{arg->Rank()}; rank > 0) {
          return rank;
        }
      }
    }
    return 0;
  } else {
    return proc_.Rank();
  }
}
ProcedureRef::~ProcedureRef() {}
void ProcedureRef::Deleter(ProcedureRef *p) { delete p; }
FOR_EACH_SPECIFIC_TYPE(template class FunctionRef, )
} // namespace Fortran::evaluate
 |