1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
//===-- lib/Evaluate/fold-real.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fold-implementation.h"
#include "fold-reduction.h"
namespace Fortran::evaluate {
template <int KIND>
Expr<Type<TypeCategory::Real, KIND>> FoldIntrinsicFunction(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Real, KIND>> &&funcRef) {
using T = Type<TypeCategory::Real, KIND>;
using ComplexT = Type<TypeCategory::Complex, KIND>;
ActualArguments &args{funcRef.arguments()};
auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
CHECK(intrinsic);
std::string name{intrinsic->name};
if (name == "acos" || name == "acosh" || name == "asin" || name == "asinh" ||
(name == "atan" && args.size() == 1) || name == "atanh" ||
name == "bessel_j0" || name == "bessel_j1" || name == "bessel_y0" ||
name == "bessel_y1" || name == "cos" || name == "cosh" || name == "erf" ||
name == "erfc" || name == "erfc_scaled" || name == "exp" ||
name == "gamma" || name == "log" || name == "log10" ||
name == "log_gamma" || name == "sin" || name == "sinh" ||
name == "sqrt" || name == "tan" || name == "tanh") {
CHECK(args.size() == 1);
if (auto callable{GetHostRuntimeWrapper<T, T>(name)}) {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(real(kind=%d)) cannot be folded on host"_en_US, name, KIND);
}
} else if (name == "amax0" || name == "amin0" || name == "amin1" ||
name == "amax1" || name == "dmin1" || name == "dmax1") {
return RewriteSpecificMINorMAX(context, std::move(funcRef));
} else if (name == "atan" || name == "atan2" || name == "hypot" ||
name == "mod") {
std::string localName{name == "atan" ? "atan2" : name};
CHECK(args.size() == 2);
if (auto callable{GetHostRuntimeWrapper<T, T, T>(localName)}) {
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(real(kind=%d), real(kind%d)) cannot be folded on host"_en_US,
name, KIND, KIND);
}
} else if (name == "bessel_jn" || name == "bessel_yn") {
if (args.size() == 2) { // elemental
// runtime functions use int arg
using Int4 = Type<TypeCategory::Integer, 4>;
if (auto callable{GetHostRuntimeWrapper<T, Int4, T>(name)}) {
return FoldElementalIntrinsic<T, Int4, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_en_US,
name, KIND);
}
}
} else if (name == "abs") {
// Argument can be complex or real
if (auto *x{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), &Scalar<T>::ABS);
} else if (auto *z{UnwrapExpr<Expr<SomeComplex>>(args[0])}) {
if (auto callable{GetHostRuntimeWrapper<T, ComplexT>("abs")}) {
return FoldElementalIntrinsic<T, ComplexT>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"abs(complex(kind=%d)) cannot be folded on host"_en_US, KIND);
}
} else {
common::die(" unexpected argument type inside abs");
}
} else if (name == "aimag") {
return FoldElementalIntrinsic<T, ComplexT>(
context, std::move(funcRef), &Scalar<ComplexT>::AIMAG);
} else if (name == "aint" || name == "anint") {
// ANINT rounds ties away from zero, not to even
common::RoundingMode mode{name == "aint"
? common::RoundingMode::ToZero
: common::RoundingMode::TiesAwayFromZero};
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>([&name, &context, mode](
const Scalar<T> &x) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> y{x.ToWholeNumber(mode)};
if (y.flags.test(RealFlag::Overflow)) {
context.messages().Say("%s intrinsic folding overflow"_en_US, name);
}
return y.value;
}));
} else if (name == "dprod") {
if (auto scalars{GetScalarConstantArguments<T, T>(context, args)}) {
return Fold(context,
Expr<T>{Multiply<T>{
Expr<T>{std::get<0>(*scalars)}, Expr<T>{std::get<1>(*scalars)}}});
}
} else if (name == "epsilon") {
return Expr<T>{Scalar<T>::EPSILON()};
} else if (name == "huge") {
return Expr<T>{Scalar<T>::HUGE()};
} else if (name == "max") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Greater);
} else if (name == "maxval") {
return FoldMaxvalMinval<T>(context, std::move(funcRef),
RelationalOperator::GT, T::Scalar::HUGE().Negate());
} else if (name == "merge") {
return FoldMerge<T>(context, std::move(funcRef));
} else if (name == "min") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Less);
} else if (name == "minval") {
return FoldMaxvalMinval<T>(
context, std::move(funcRef), RelationalOperator::LT, T::Scalar::HUGE());
} else if (name == "product") {
auto one{Scalar<T>::FromInteger(value::Integer<8>{1}).value};
return FoldProduct<T>(context, std::move(funcRef), one);
} else if (name == "real") {
if (auto *expr{args[0].value().UnwrapExpr()}) {
return ToReal<KIND>(context, std::move(*expr));
}
} else if (name == "sign") {
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), &Scalar<T>::SIGN);
} else if (name == "sum") {
return FoldSum<T>(context, std::move(funcRef));
} else if (name == "tiny") {
return Expr<T>{Scalar<T>::TINY()};
}
// TODO: cshift, dim, dot_product, eoshift, fraction, matmul,
// maxloc, minloc, modulo, nearest, norm2, pack, rrspacing, scale,
// set_exponent, spacing, spread, transfer, transpose, unpack,
// bessel_jn (transformational) and bessel_yn (transformational)
return Expr<T>{std::move(funcRef)};
}
template <int KIND>
Expr<Type<TypeCategory::Real, KIND>> FoldOperation(
FoldingContext &context, ComplexComponent<KIND> &&x) {
using Operand = Type<TypeCategory::Complex, KIND>;
using Result = Type<TypeCategory::Real, KIND>;
if (auto array{ApplyElementwise(context, x,
std::function<Expr<Result>(Expr<Operand> &&)>{
[=](Expr<Operand> &&operand) {
return Expr<Result>{ComplexComponent<KIND>{
x.isImaginaryPart, std::move(operand)}};
}})}) {
return *array;
}
using Part = Type<TypeCategory::Real, KIND>;
auto &operand{x.left()};
if (auto value{GetScalarConstantValue<Operand>(operand)}) {
if (x.isImaginaryPart) {
return Expr<Part>{Constant<Part>{value->AIMAG()}};
} else {
return Expr<Part>{Constant<Part>{value->REAL()}};
}
}
return Expr<Part>{std::move(x)};
}
FOR_EACH_REAL_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeReal>;
} // namespace Fortran::evaluate
|