File: log_abs.sollya

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (36 lines) | stat: -rw-r--r-- 1,141 bytes parent folder | download | duplicates (28)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
// polynomial for approximating log(1+x)
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

deg = 6; // poly degree
// interval ~= 1/(2*N), where N is the table entries
a = -0x1.fp-9;
b =  0x1.fp-9;

// find log(1+x) polynomial with minimal absolute error
f = log(1+x);

// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
approx = proc(poly,d) {
  return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10);
};

// first coeff is fixed, iteratively find optimal double prec coeffs
poly = x;
for i from 2 to deg do {
  p = roundcoefficients(approx(poly,i), [|D ...|]);
  poly = poly + x^i*coeff(p,0);
};

display = hexadecimal;
print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
// relative error computation fails if f(0)==0
// g = f(x)/x = log(1+x)/x; using taylor series
g = 0;
for i from 0 to 60 do { g = g + (-x)^i/(i+1); };
print("rel error:", accurateinfnorm(1-poly(x)/x/g(x), [a;b], 30));
print("in [",a,b,"]");
print("coeffs:");
for i from 0 to deg do coeff(poly,i);