File: FPBits.h

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (159 lines) | stat: -rw-r--r-- 5,008 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//===-- Abstract class for bit manipulation of float numbers. ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_UTILS_FPUTIL_FP_BITS_H
#define LLVM_LIBC_UTILS_FPUTIL_FP_BITS_H

#include "PlatformDefs.h"

#include "utils/CPP/TypeTraits.h"

#include "FloatProperties.h"
#include <stdint.h>

namespace __llvm_libc {
namespace fputil {

template <typename T> struct MantissaWidth {
  static constexpr unsigned value = FloatProperties<T>::mantissaWidth;
};

template <typename T> struct ExponentWidth {
  static constexpr unsigned value = FloatProperties<T>::exponentWidth;
};

// A generic class to represent single precision, double precision, and quad
// precision IEEE 754 floating point formats.
// On most platforms, the 'float' type corresponds to single precision floating
// point numbers, the 'double' type corresponds to double precision floating
// point numers, and the 'long double' type corresponds to the quad precision
// floating numbers. On x86 platforms however, the 'long double' type maps to
// an x87 floating point format. This format is an IEEE 754 extension format.
// It is handled as an explicit specialization of this class.
template <typename T> union FPBits {
  static_assert(cpp::IsFloatingPointType<T>::Value,
                "FPBits instantiated with invalid type.");

  // Reinterpreting bits as an integer value and interpreting the bits of an
  // integer value as a floating point value is used in tests. So, a convenient
  // type is provided for such reinterpretations.
  using FloatProp = FloatProperties<T>;
  // TODO: Change UintType name to BitsType for consistency.
  using UIntType = typename FloatProp::BitsType;

  UIntType bits;

  void setMantissa(UIntType mantVal) {
    mantVal &= (FloatProp::mantissaMask);
    bits &= ~(FloatProp::mantissaMask);
    bits |= mantVal;
  }

  UIntType getMantissa() const { return bits & FloatProp::mantissaMask; }

  void setUnbiasedExponent(UIntType expVal) {
    expVal = (expVal << (FloatProp::mantissaWidth)) & FloatProp::exponentMask;
    bits &= ~(FloatProp::exponentMask);
    bits |= expVal;
  }

  uint16_t getUnbiasedExponent() const {
    return uint16_t((bits & FloatProp::exponentMask) >>
                    (FloatProp::mantissaWidth));
  }

  void setSign(bool signVal) {
    bits &= ~(FloatProp::signMask);
    UIntType sign = UIntType(signVal) << (FloatProp::bitWidth - 1);
    bits |= sign;
  }

  bool getSign() const {
    return ((bits & FloatProp::signMask) >> (FloatProp::bitWidth - 1));
  }
  T val;

  static_assert(sizeof(T) == sizeof(UIntType),
                "Data type and integral representation have different sizes.");

  static constexpr int exponentBias = (1 << (ExponentWidth<T>::value - 1)) - 1;
  static constexpr int maxExponent = (1 << ExponentWidth<T>::value) - 1;

  static constexpr UIntType minSubnormal = UIntType(1);
  static constexpr UIntType maxSubnormal =
      (UIntType(1) << MantissaWidth<T>::value) - 1;
  static constexpr UIntType minNormal =
      (UIntType(1) << MantissaWidth<T>::value);
  static constexpr UIntType maxNormal =
      ((UIntType(maxExponent) - 1) << MantissaWidth<T>::value) | maxSubnormal;

  // We don't want accidental type promotions/conversions so we require exact
  // type match.
  template <typename XType,
            cpp::EnableIfType<cpp::IsSame<T, XType>::Value, int> = 0>
  explicit FPBits(XType x) : val(x) {}

  template <typename XType,
            cpp::EnableIfType<cpp::IsSame<XType, UIntType>::Value, int> = 0>
  explicit FPBits(XType x) : bits(x) {}

  FPBits() : bits(0) {}

  explicit operator T() { return val; }

  UIntType uintval() const { return bits; }

  int getExponent() const { return int(getUnbiasedExponent()) - exponentBias; }

  bool isZero() const {
    return getMantissa() == 0 && getUnbiasedExponent() == 0;
  }

  bool isInf() const {
    return getMantissa() == 0 && getUnbiasedExponent() == maxExponent;
  }

  bool isNaN() const {
    return getUnbiasedExponent() == maxExponent && getMantissa() != 0;
  }

  bool isInfOrNaN() const { return getUnbiasedExponent() == maxExponent; }

  static FPBits<T> zero() { return FPBits(); }

  static FPBits<T> negZero() {
    return FPBits(UIntType(1) << (sizeof(UIntType) * 8 - 1));
  }

  static FPBits<T> inf() {
    FPBits<T> bits;
    bits.setUnbiasedExponent(maxExponent);
    return bits;
  }

  static FPBits<T> negInf() {
    FPBits<T> bits = inf();
    bits.setSign(1);
    return bits;
  }

  static T buildNaN(UIntType v) {
    FPBits<T> bits = inf();
    bits.setMantissa(v);
    return T(bits);
  }
};

} // namespace fputil
} // namespace __llvm_libc

#ifdef SPECIAL_X86_LONG_DOUBLE
#include "utils/FPUtil/LongDoubleBitsX86.h"
#endif

#endif // LLVM_LIBC_UTILS_FPUTIL_FP_BITS_H