File: NextAfterLongDoubleX86.h

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (114 lines) | stat: -rw-r--r-- 3,847 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
//===-- nextafter implementation for x86 long double numbers ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_UTILS_FPUTIL_NEXT_AFTER_LONG_DOUBLE_X86_H
#define LLVM_LIBC_UTILS_FPUTIL_NEXT_AFTER_LONG_DOUBLE_X86_H

#include "FPBits.h"

#include <stdint.h>

namespace __llvm_libc {
namespace fputil {

static inline long double nextafter(long double from, long double to) {
  using FPBits = FPBits<long double>;
  FPBits fromBits(from);
  if (fromBits.isNaN())
    return from;

  FPBits toBits(to);
  if (toBits.isNaN())
    return to;

  if (from == to)
    return to;

  // Convert pseudo subnormal number to normal number.
  if (fromBits.getImplicitBit() == 1 && fromBits.getUnbiasedExponent() == 0) {
    fromBits.setUnbiasedExponent(1);
  }

  using UIntType = FPBits::UIntType;
  constexpr UIntType signVal = (UIntType(1) << 79);
  constexpr UIntType mantissaMask =
      (UIntType(1) << MantissaWidth<long double>::value) - 1;
  UIntType intVal = fromBits.uintval();
  if (from < 0.0l) {
    if (from > to) {
      if (intVal == (signVal + FPBits::maxSubnormal)) {
        // We deal with normal/subnormal boundary separately to avoid
        // dealing with the implicit bit.
        intVal = signVal + FPBits::minNormal;
      } else if ((intVal & mantissaMask) == mantissaMask) {
        fromBits.setMantissa(0);
        // Incrementing exponent might overflow the value to infinity,
        // which is what is expected. Since NaNs are handling separately,
        // it will never overflow "beyond" infinity.
        fromBits.setUnbiasedExponent(fromBits.getUnbiasedExponent() + 1);
        return fromBits;
      } else {
        ++intVal;
      }
    } else {
      if (intVal == (signVal + FPBits::minNormal)) {
        // We deal with normal/subnormal boundary separately to avoid
        // dealing with the implicit bit.
        intVal = signVal + FPBits::maxSubnormal;
      } else if ((intVal & mantissaMask) == 0) {
        fromBits.setMantissa(mantissaMask);
        // from == 0 is handled separately so decrementing the exponent will not
        // lead to underflow.
        fromBits.setUnbiasedExponent(fromBits.getUnbiasedExponent() - 1);
        return fromBits;
      } else {
        --intVal;
      }
    }
  } else if (from == 0.0l) {
    if (from > to)
      intVal = signVal + 1;
    else
      intVal = 1;
  } else {
    if (from > to) {
      if (intVal == FPBits::minNormal) {
        intVal = FPBits::maxSubnormal;
      } else if ((intVal & mantissaMask) == 0) {
        fromBits.setMantissa(mantissaMask);
        // from == 0 is handled separately so decrementing the exponent will not
        // lead to underflow.
        fromBits.setUnbiasedExponent(fromBits.getUnbiasedExponent() - 1);
        return fromBits;
      } else {
        --intVal;
      }
    } else {
      if (intVal == FPBits::maxSubnormal) {
        intVal = FPBits::minNormal;
      } else if ((intVal & mantissaMask) == mantissaMask) {
        fromBits.setMantissa(0);
        // Incrementing exponent might overflow the value to infinity,
        // which is what is expected. Since NaNs are handling separately,
        // it will never overflow "beyond" infinity.
        fromBits.setUnbiasedExponent(fromBits.getUnbiasedExponent() + 1);
        return fromBits;
      } else {
        ++intVal;
      }
    }
  }

  return *reinterpret_cast<long double *>(&intVal);
  // TODO: Raise floating point exceptions as required by the standard.
}

} // namespace fputil
} // namespace __llvm_libc

#endif // LLVM_LIBC_UTILS_FPUTIL_NEXT_AFTER_LONG_DOUBLE_X86_H