1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
//===-- Square root of IEEE 754 floating point numbers ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_H
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_H
#include "FPBits.h"
#include "PlatformDefs.h"
#include "utils/CPP/TypeTraits.h"
namespace __llvm_libc {
namespace fputil {
namespace internal {
template <typename T>
static inline void normalize(int &exponent,
typename FPBits<T>::UIntType &mantissa);
template <> inline void normalize<float>(int &exponent, uint32_t &mantissa) {
// Use binary search to shift the leading 1 bit.
// With MantissaWidth<float> = 23, it will take
// ceil(log2(23)) = 5 steps checking the mantissa bits as followed:
// Step 1: 0000 0000 0000 XXXX XXXX XXXX
// Step 2: 0000 00XX XXXX XXXX XXXX XXXX
// Step 3: 000X XXXX XXXX XXXX XXXX XXXX
// Step 4: 00XX XXXX XXXX XXXX XXXX XXXX
// Step 5: 0XXX XXXX XXXX XXXX XXXX XXXX
constexpr int nsteps = 5; // = ceil(log2(MantissaWidth))
constexpr uint32_t bounds[nsteps] = {1 << 12, 1 << 18, 1 << 21, 1 << 22,
1 << 23};
constexpr int shifts[nsteps] = {12, 6, 3, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
template <> inline void normalize<double>(int &exponent, uint64_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<double> = 52, it will take
// ceil(log2(52)) = 6 steps checking the mantissa bits.
constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
constexpr uint64_t bounds[nsteps] = {1ULL << 26, 1ULL << 39, 1ULL << 46,
1ULL << 49, 1ULL << 51, 1ULL << 52};
constexpr int shifts[nsteps] = {27, 14, 7, 4, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
#ifdef LONG_DOUBLE_IS_DOUBLE
template <>
inline void normalize<long double>(int &exponent, uint64_t &mantissa) {
normalize<double>(exponent, mantissa);
}
#elif !defined(SPECIAL_X86_LONG_DOUBLE)
template <>
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<long double> = 112, it will take
// ceil(log2(112)) = 7 steps checking the mantissa bits.
constexpr int nsteps = 7; // = ceil(log2(MantissaWidth))
constexpr __uint128_t bounds[nsteps] = {
__uint128_t(1) << 56, __uint128_t(1) << 84, __uint128_t(1) << 98,
__uint128_t(1) << 105, __uint128_t(1) << 109, __uint128_t(1) << 111,
__uint128_t(1) << 112};
constexpr int shifts[nsteps] = {57, 29, 15, 8, 4, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
#endif
} // namespace internal
// Correctly rounded IEEE 754 SQRT with round to nearest, ties to even.
// Shift-and-add algorithm.
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T sqrt(T x) {
using UIntType = typename FPBits<T>::UIntType;
constexpr UIntType One = UIntType(1) << MantissaWidth<T>::value;
FPBits<T> bits(x);
if (bits.isInfOrNaN()) {
if (bits.getSign() && (bits.getMantissa() == 0)) {
// sqrt(-Inf) = NaN
return FPBits<T>::buildNaN(One >> 1);
} else {
// sqrt(NaN) = NaN
// sqrt(+Inf) = +Inf
return x;
}
} else if (bits.isZero()) {
// sqrt(+0) = +0
// sqrt(-0) = -0
return x;
} else if (bits.getSign()) {
// sqrt( negative numbers ) = NaN
return FPBits<T>::buildNaN(One >> 1);
} else {
int xExp = bits.getExponent();
UIntType xMant = bits.getMantissa();
// Step 1a: Normalize denormal input and append hiddent bit to the mantissa
if (bits.getUnbiasedExponent() == 0) {
++xExp; // let xExp be the correct exponent of One bit.
internal::normalize<T>(xExp, xMant);
} else {
xMant |= One;
}
// Step 1b: Make sure the exponent is even.
if (xExp & 1) {
--xExp;
xMant <<= 1;
}
// After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
// 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
// Notice that the output of sqrt is always in the normal range.
// To perform shift-and-add algorithm to find y, let denote:
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
// r(n) = 2^n ( xMant - y(n)^2 ).
// That leads to the following recurrence formula:
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
// 0 otherwise.
UIntType y = One;
UIntType r = xMant - One;
for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
r <<= 1;
UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
if (r >= tmp) {
r -= tmp;
y += current_bit;
}
}
// We compute one more iteration in order to round correctly.
bool lsb = y & 1; // Least significant bit
bool rb = false; // Round bit
r <<= 2;
UIntType tmp = (y << 2) + 1;
if (r >= tmp) {
r -= tmp;
rb = true;
}
// Remove hidden bit and append the exponent field.
xExp = ((xExp >> 1) + FPBits<T>::exponentBias);
y = (y - One) | (static_cast<UIntType>(xExp) << MantissaWidth<T>::value);
// Round to nearest, ties to even
if (rb && (lsb || (r != 0))) {
++y;
}
return *reinterpret_cast<T *>(&y);
}
}
} // namespace fputil
} // namespace __llvm_libc
#ifdef SPECIAL_X86_LONG_DOUBLE
#include "SqrtLongDoubleX86.h"
#endif // SPECIAL_X86_LONG_DOUBLE
#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_H
|