1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
//===-- MPFRUtils.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_TESTUTILS_MPFRUTILS_H
#define LLVM_LIBC_UTILS_TESTUTILS_MPFRUTILS_H
#include "utils/CPP/TypeTraits.h"
#include "utils/UnitTest/Test.h"
#include <stdint.h>
namespace __llvm_libc {
namespace testing {
namespace mpfr {
enum class Operation : int {
// Operations with take a single floating point number as input
// and produce a single floating point number as output. The input
// and output floating point numbers are of the same kind.
BeginUnaryOperationsSingleOutput,
Abs,
Ceil,
Cos,
Exp,
Exp2,
Expm1,
Floor,
Round,
Sin,
Sqrt,
Tan,
Trunc,
EndUnaryOperationsSingleOutput,
// Operations which take a single floating point nubmer as input
// but produce two outputs. The first ouput is a floating point
// number of the same type as the input. The second output is of type
// 'int'.
BeginUnaryOperationsTwoOutputs,
Frexp, // Floating point output, the first output, is the fractional part.
EndUnaryOperationsTwoOutputs,
// Operations wich take two floating point nubmers of the same type as
// input and produce a single floating point number of the same type as
// output.
BeginBinaryOperationsSingleOutput,
Hypot,
EndBinaryOperationsSingleOutput,
// Operations which take two floating point numbers of the same type as
// input and produce two outputs. The first output is a floating nubmer of
// the same type as the inputs. The second output is af type 'int'.
BeginBinaryOperationsTwoOutputs,
RemQuo, // The first output, the floating point output, is the remainder.
EndBinaryOperationsTwoOutputs,
// Operations which take three floating point nubmers of the same type as
// input and produce a single floating point number of the same type as
// output.
BeginTernaryOperationsSingleOuput,
Fma,
EndTernaryOperationsSingleOutput,
};
template <typename T> struct BinaryInput {
static_assert(
__llvm_libc::cpp::IsFloatingPointType<T>::Value,
"Template parameter of BinaryInput must be a floating point type.");
using Type = T;
T x, y;
};
template <typename T> struct TernaryInput {
static_assert(
__llvm_libc::cpp::IsFloatingPointType<T>::Value,
"Template parameter of TernaryInput must be a floating point type.");
using Type = T;
T x, y, z;
};
template <typename T> struct BinaryOutput {
T f;
int i;
};
namespace internal {
template <typename T1, typename T2>
struct AreMatchingBinaryInputAndBinaryOutput {
static constexpr bool value = false;
};
template <typename T>
struct AreMatchingBinaryInputAndBinaryOutput<BinaryInput<T>, BinaryOutput<T>> {
static constexpr bool value = cpp::IsFloatingPointType<T>::Value;
};
template <typename T>
bool compareUnaryOperationSingleOutput(Operation op, T input, T libcOutput,
double t);
template <typename T>
bool compareUnaryOperationTwoOutputs(Operation op, T input,
const BinaryOutput<T> &libcOutput,
double t);
template <typename T>
bool compareBinaryOperationTwoOutputs(Operation op, const BinaryInput<T> &input,
const BinaryOutput<T> &libcOutput,
double t);
template <typename T>
bool compareBinaryOperationOneOutput(Operation op, const BinaryInput<T> &input,
T libcOutput, double t);
template <typename T>
bool compareTernaryOperationOneOutput(Operation op,
const TernaryInput<T> &input,
T libcOutput, double t);
template <typename T>
void explainUnaryOperationSingleOutputError(Operation op, T input, T matchValue,
testutils::StreamWrapper &OS);
template <typename T>
void explainUnaryOperationTwoOutputsError(Operation op, T input,
const BinaryOutput<T> &matchValue,
testutils::StreamWrapper &OS);
template <typename T>
void explainBinaryOperationTwoOutputsError(Operation op,
const BinaryInput<T> &input,
const BinaryOutput<T> &matchValue,
testutils::StreamWrapper &OS);
template <typename T>
void explainBinaryOperationOneOutputError(Operation op,
const BinaryInput<T> &input,
T matchValue,
testutils::StreamWrapper &OS);
template <typename T>
void explainTernaryOperationOneOutputError(Operation op,
const TernaryInput<T> &input,
T matchValue,
testutils::StreamWrapper &OS);
template <Operation op, typename InputType, typename OutputType>
class MPFRMatcher : public testing::Matcher<OutputType> {
InputType input;
OutputType matchValue;
double ulpTolerance;
public:
MPFRMatcher(InputType testInput, double ulpTolerance)
: input(testInput), ulpTolerance(ulpTolerance) {}
bool match(OutputType libcResult) {
matchValue = libcResult;
return match(input, matchValue, ulpTolerance);
}
void explainError(testutils::StreamWrapper &OS) override {
explainError(input, matchValue, OS);
}
private:
template <typename T> static bool match(T in, T out, double tolerance) {
return compareUnaryOperationSingleOutput(op, in, out, tolerance);
}
template <typename T>
static bool match(T in, const BinaryOutput<T> &out, double tolerance) {
return compareUnaryOperationTwoOutputs(op, in, out, tolerance);
}
template <typename T>
static bool match(const BinaryInput<T> &in, T out, double tolerance) {
return compareBinaryOperationOneOutput(op, in, out, tolerance);
}
template <typename T>
static bool match(BinaryInput<T> in, const BinaryOutput<T> &out,
double tolerance) {
return compareBinaryOperationTwoOutputs(op, in, out, tolerance);
}
template <typename T>
static bool match(const TernaryInput<T> &in, T out, double tolerance) {
return compareTernaryOperationOneOutput(op, in, out, tolerance);
}
template <typename T>
static void explainError(T in, T out, testutils::StreamWrapper &OS) {
explainUnaryOperationSingleOutputError(op, in, out, OS);
}
template <typename T>
static void explainError(T in, const BinaryOutput<T> &out,
testutils::StreamWrapper &OS) {
explainUnaryOperationTwoOutputsError(op, in, out, OS);
}
template <typename T>
static void explainError(const BinaryInput<T> &in, const BinaryOutput<T> &out,
testutils::StreamWrapper &OS) {
explainBinaryOperationTwoOutputsError(op, in, out, OS);
}
template <typename T>
static void explainError(const BinaryInput<T> &in, T out,
testutils::StreamWrapper &OS) {
explainBinaryOperationOneOutputError(op, in, out, OS);
}
template <typename T>
static void explainError(const TernaryInput<T> &in, T out,
testutils::StreamWrapper &OS) {
explainTernaryOperationOneOutputError(op, in, out, OS);
}
};
} // namespace internal
// Return true if the input and ouput types for the operation op are valid
// types.
template <Operation op, typename InputType, typename OutputType>
constexpr bool isValidOperation() {
return (Operation::BeginUnaryOperationsSingleOutput < op &&
op < Operation::EndUnaryOperationsSingleOutput &&
cpp::IsSame<InputType, OutputType>::Value &&
cpp::IsFloatingPointType<InputType>::Value) ||
(Operation::BeginUnaryOperationsTwoOutputs < op &&
op < Operation::EndUnaryOperationsTwoOutputs &&
cpp::IsFloatingPointType<InputType>::Value &&
cpp::IsSame<OutputType, BinaryOutput<InputType>>::Value) ||
(Operation::BeginBinaryOperationsSingleOutput < op &&
op < Operation::EndBinaryOperationsSingleOutput &&
cpp::IsFloatingPointType<OutputType>::Value &&
cpp::IsSame<InputType, BinaryInput<OutputType>>::Value) ||
(Operation::BeginBinaryOperationsTwoOutputs < op &&
op < Operation::EndBinaryOperationsTwoOutputs &&
internal::AreMatchingBinaryInputAndBinaryOutput<InputType,
OutputType>::value) ||
(Operation::BeginTernaryOperationsSingleOuput < op &&
op < Operation::EndTernaryOperationsSingleOutput &&
cpp::IsFloatingPointType<OutputType>::Value &&
cpp::IsSame<InputType, TernaryInput<OutputType>>::Value);
}
template <Operation op, typename InputType, typename OutputType>
__attribute__((no_sanitize("address")))
cpp::EnableIfType<isValidOperation<op, InputType, OutputType>(),
internal::MPFRMatcher<op, InputType, OutputType>>
getMPFRMatcher(InputType input, OutputType outputUnused, double t) {
return internal::MPFRMatcher<op, InputType, OutputType>(input, t);
}
enum class RoundingMode : uint8_t { Upward, Downward, TowardZero, Nearest };
template <typename T> T Round(T x, RoundingMode mode);
template <typename T> bool RoundToLong(T x, long &result);
template <typename T> bool RoundToLong(T x, RoundingMode mode, long &result);
} // namespace mpfr
} // namespace testing
} // namespace __llvm_libc
#define EXPECT_MPFR_MATCH(op, input, matchValue, tolerance) \
EXPECT_THAT(matchValue, __llvm_libc::testing::mpfr::getMPFRMatcher<op>( \
input, matchValue, tolerance))
#define ASSERT_MPFR_MATCH(op, input, matchValue, tolerance) \
ASSERT_THAT(matchValue, __llvm_libc::testing::mpfr::getMPFRMatcher<op>( \
input, matchValue, tolerance))
#endif // LLVM_LIBC_UTILS_TESTUTILS_MPFRUTILS_H
|