1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
//===- AVR.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// AVR is a Harvard-architecture 8-bit microcontroller designed for small
// baremetal programs. All AVR-family processors have 32 8-bit registers.
// The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest
// one supports up to 2^24 data address space and 2^22 code address space.
//
// Since it is a baremetal programming, there's usually no loader to load
// ELF files on AVRs. You are expected to link your program against address
// 0 and pull out a .text section from the result using objcopy, so that you
// can write the linked code to on-chip flush memory. You can do that with
// the following commands:
//
// ld.lld -Ttext=0 -o foo foo.o
// objcopy -O binary --only-section=.text foo output.bin
//
// Note that the current AVR support is very preliminary so you can't
// link any useful program yet, though.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Symbols.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class AVR final : public TargetInfo {
public:
AVR();
uint32_t calcEFlags() const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
};
} // namespace
AVR::AVR() { noneRel = R_AVR_NONE; }
RelExpr AVR::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
switch (type) {
case R_AVR_6:
case R_AVR_6_ADIW:
case R_AVR_8:
case R_AVR_16:
case R_AVR_16_PM:
case R_AVR_32:
case R_AVR_LDI:
case R_AVR_LO8_LDI:
case R_AVR_LO8_LDI_NEG:
case R_AVR_HI8_LDI:
case R_AVR_HI8_LDI_NEG:
case R_AVR_HH8_LDI_NEG:
case R_AVR_HH8_LDI:
case R_AVR_MS8_LDI_NEG:
case R_AVR_MS8_LDI:
case R_AVR_LO8_LDI_PM:
case R_AVR_LO8_LDI_PM_NEG:
case R_AVR_HI8_LDI_PM:
case R_AVR_HI8_LDI_PM_NEG:
case R_AVR_HH8_LDI_PM:
case R_AVR_HH8_LDI_PM_NEG:
case R_AVR_PORT5:
case R_AVR_PORT6:
case R_AVR_CALL:
return R_ABS;
case R_AVR_7_PCREL:
case R_AVR_13_PCREL:
return R_PC;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
static void writeLDI(uint8_t *loc, uint64_t val) {
write16le(loc, (read16le(loc) & 0xf0f0) | (val & 0xf0) << 4 | (val & 0x0f));
}
void AVR::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
switch (rel.type) {
case R_AVR_8:
checkUInt(loc, val, 8, rel);
*loc = val;
break;
case R_AVR_16:
// Note: this relocation is often used between code and data space, which
// are 0x800000 apart in the output ELF file. The bitmask cuts off the high
// bit.
write16le(loc, val & 0xffff);
break;
case R_AVR_16_PM:
checkAlignment(loc, val, 2, rel);
checkUInt(loc, val >> 1, 16, rel);
write16le(loc, val >> 1);
break;
case R_AVR_32:
checkUInt(loc, val, 32, rel);
write32le(loc, val);
break;
case R_AVR_LDI:
checkUInt(loc, val, 8, rel);
writeLDI(loc, val & 0xff);
break;
case R_AVR_LO8_LDI_NEG:
writeLDI(loc, -val & 0xff);
break;
case R_AVR_LO8_LDI:
writeLDI(loc, val & 0xff);
break;
case R_AVR_HI8_LDI_NEG:
writeLDI(loc, (-val >> 8) & 0xff);
break;
case R_AVR_HI8_LDI:
writeLDI(loc, (val >> 8) & 0xff);
break;
case R_AVR_HH8_LDI_NEG:
writeLDI(loc, (-val >> 16) & 0xff);
break;
case R_AVR_HH8_LDI:
writeLDI(loc, (val >> 16) & 0xff);
break;
case R_AVR_MS8_LDI_NEG:
writeLDI(loc, (-val >> 24) & 0xff);
break;
case R_AVR_MS8_LDI:
writeLDI(loc, (val >> 24) & 0xff);
break;
case R_AVR_LO8_LDI_PM:
checkAlignment(loc, val, 2, rel);
writeLDI(loc, (val >> 1) & 0xff);
break;
case R_AVR_HI8_LDI_PM:
checkAlignment(loc, val, 2, rel);
writeLDI(loc, (val >> 9) & 0xff);
break;
case R_AVR_HH8_LDI_PM:
checkAlignment(loc, val, 2, rel);
writeLDI(loc, (val >> 17) & 0xff);
break;
case R_AVR_LO8_LDI_PM_NEG:
checkAlignment(loc, val, 2, rel);
writeLDI(loc, (-val >> 1) & 0xff);
break;
case R_AVR_HI8_LDI_PM_NEG:
checkAlignment(loc, val, 2, rel);
writeLDI(loc, (-val >> 9) & 0xff);
break;
case R_AVR_HH8_LDI_PM_NEG:
checkAlignment(loc, val, 2, rel);
writeLDI(loc, (-val >> 17) & 0xff);
break;
case R_AVR_PORT5:
checkUInt(loc, val, 5, rel);
write16le(loc, (read16le(loc) & 0xff07) | (val << 3));
break;
case R_AVR_PORT6:
checkUInt(loc, val, 6, rel);
write16le(loc, (read16le(loc) & 0xf9f0) | (val & 0x30) << 5 | (val & 0x0f));
break;
// Since every jump destination is word aligned we gain an extra bit
case R_AVR_7_PCREL: {
checkInt(loc, val, 7, rel);
checkAlignment(loc, val, 2, rel);
const uint16_t target = (val - 2) >> 1;
write16le(loc, (read16le(loc) & 0xfc07) | ((target & 0x7f) << 3));
break;
}
case R_AVR_13_PCREL: {
checkAlignment(loc, val, 2, rel);
const uint16_t target = (val - 2) >> 1;
write16le(loc, (read16le(loc) & 0xf000) | (target & 0xfff));
break;
}
case R_AVR_6:
checkInt(loc, val, 6, rel);
write16le(loc, (read16le(loc) & 0xd3f8) | (val & 0x20) << 8 |
(val & 0x18) << 7 | (val & 0x07));
break;
case R_AVR_6_ADIW:
checkInt(loc, val, 6, rel);
write16le(loc, (read16le(loc) & 0xff30) | (val & 0x30) << 2 | (val & 0x0F));
break;
case R_AVR_CALL: {
uint16_t hi = val >> 17;
uint16_t lo = val >> 1;
write16le(loc, read16le(loc) | ((hi >> 1) << 4) | (hi & 1));
write16le(loc + 2, lo);
break;
}
default:
llvm_unreachable("unknown relocation");
}
}
TargetInfo *elf::getAVRTargetInfo() {
static AVR target;
return ⌖
}
static uint32_t getEFlags(InputFile *file) {
return cast<ObjFile<ELF32LE>>(file)->getObj().getHeader().e_flags;
}
uint32_t AVR::calcEFlags() const {
assert(!objectFiles.empty());
uint32_t flags = getEFlags(objectFiles[0]);
bool hasLinkRelaxFlag = flags & EF_AVR_LINKRELAX_PREPARED;
for (InputFile *f : makeArrayRef(objectFiles).slice(1)) {
uint32_t objFlags = getEFlags(f);
if ((objFlags & EF_AVR_ARCH_MASK) != (flags & EF_AVR_ARCH_MASK))
error(toString(f) +
": cannot link object files with incompatible target ISA");
if (!(objFlags & EF_AVR_LINKRELAX_PREPARED))
hasLinkRelaxFlag = false;
}
if (!hasLinkRelaxFlag)
flags &= ~EF_AVR_LINKRELAX_PREPARED;
return flags;
}
|