1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
|
//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions to parse Mach-O object files. In this comment,
// we describe the Mach-O file structure and how we parse it.
//
// Mach-O is not very different from ELF or COFF. The notion of symbols,
// sections and relocations exists in Mach-O as it does in ELF and COFF.
//
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
// In ELF/COFF, sections are an atomic unit of data copied from input files to
// output files. When we merge or garbage-collect sections, we treat each
// section as an atomic unit. In Mach-O, that's not the case. Sections can
// consist of multiple subsections, and subsections are a unit of merging and
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
// ELF/COFF's sections than Mach-O's sections are.
//
// A section can have multiple symbols. A symbol that does not have the
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
// definition, a symbol is always present at the beginning of each subsection. A
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
// point to a middle of a subsection.
//
// The notion of subsections also affects how relocations are represented in
// Mach-O. All references within a section need to be explicitly represented as
// relocations if they refer to different subsections, because we obviously need
// to fix up addresses if subsections are laid out in an output file differently
// than they were in object files. To represent that, Mach-O relocations can
// refer to an unnamed location via its address. Scattered relocations (those
// with the R_SCATTERED bit set) always refer to unnamed locations.
// Non-scattered relocations refer to an unnamed location if r_extern is not set
// and r_symbolnum is zero.
//
// Without the above differences, I think you can use your knowledge about ELF
// and COFF for Mach-O.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Config.h"
#include "Driver.h"
#include "Dwarf.h"
#include "ExportTrie.h"
#include "InputSection.h"
#include "MachOStructs.h"
#include "ObjC.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/DWARF.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Reproduce.h"
#include "llvm/ADT/iterator.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TarWriter.h"
#include "llvm/TextAPI/Architecture.h"
#include "llvm/TextAPI/InterfaceFile.h"
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace llvm::sys;
using namespace lld;
using namespace lld::macho;
// Returns "<internal>", "foo.a(bar.o)", or "baz.o".
std::string lld::toString(const InputFile *f) {
if (!f)
return "<internal>";
// Multiple dylibs can be defined in one .tbd file.
if (auto dylibFile = dyn_cast<DylibFile>(f))
if (f->getName().endswith(".tbd"))
return (f->getName() + "(" + dylibFile->installName + ")").str();
if (f->archiveName.empty())
return std::string(f->getName());
return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
}
SetVector<InputFile *> macho::inputFiles;
std::unique_ptr<TarWriter> macho::tar;
int InputFile::idCount = 0;
static VersionTuple decodeVersion(uint32_t version) {
unsigned major = version >> 16;
unsigned minor = (version >> 8) & 0xffu;
unsigned subMinor = version & 0xffu;
return VersionTuple(major, minor, subMinor);
}
static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
return {};
const char *hdr = input->mb.getBufferStart();
std::vector<PlatformInfo> platformInfos;
for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
PlatformInfo info;
info.target.Platform = static_cast<PlatformKind>(cmd->platform);
info.minimum = decodeVersion(cmd->minos);
platformInfos.emplace_back(std::move(info));
}
for (auto *cmd : findCommands<version_min_command>(
hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
PlatformInfo info;
switch (cmd->cmd) {
case LC_VERSION_MIN_MACOSX:
info.target.Platform = PlatformKind::macOS;
break;
case LC_VERSION_MIN_IPHONEOS:
info.target.Platform = PlatformKind::iOS;
break;
case LC_VERSION_MIN_TVOS:
info.target.Platform = PlatformKind::tvOS;
break;
case LC_VERSION_MIN_WATCHOS:
info.target.Platform = PlatformKind::watchOS;
break;
}
info.minimum = decodeVersion(cmd->version);
platformInfos.emplace_back(std::move(info));
}
return platformInfos;
}
static bool checkCompatibility(const InputFile *input) {
std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
if (platformInfos.empty())
return true;
auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
return removeSimulator(info.target.Platform) ==
removeSimulator(config->platform());
});
if (it == platformInfos.end()) {
std::string platformNames;
raw_string_ostream os(platformNames);
interleave(
platformInfos, os,
[&](const PlatformInfo &info) {
os << getPlatformName(info.target.Platform);
},
"/");
error(toString(input) + " has platform " + platformNames +
Twine(", which is different from target platform ") +
getPlatformName(config->platform()));
return false;
}
if (it->minimum > config->platformInfo.minimum)
warn(toString(input) + " has version " + it->minimum.getAsString() +
", which is newer than target minimum of " +
config->platformInfo.minimum.getAsString());
return true;
}
// Open a given file path and return it as a memory-mapped file.
Optional<MemoryBufferRef> macho::readFile(StringRef path) {
ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
if (std::error_code ec = mbOrErr.getError()) {
error("cannot open " + path + ": " + ec.message());
return None;
}
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
MemoryBufferRef mbref = mb->getMemBufferRef();
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
// If this is a regular non-fat file, return it.
const char *buf = mbref.getBufferStart();
const auto *hdr = reinterpret_cast<const fat_header *>(buf);
if (mbref.getBufferSize() < sizeof(uint32_t) ||
read32be(&hdr->magic) != FAT_MAGIC) {
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return mbref;
}
// Object files and archive files may be fat files, which contain multiple
// real files for different CPU ISAs. Here, we search for a file that matches
// with the current link target and returns it as a MemoryBufferRef.
const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
if (reinterpret_cast<const char *>(arch + i + 1) >
buf + mbref.getBufferSize()) {
error(path + ": fat_arch struct extends beyond end of file");
return None;
}
if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
read32be(&arch[i].cpusubtype) != target->cpuSubtype)
continue;
uint32_t offset = read32be(&arch[i].offset);
uint32_t size = read32be(&arch[i].size);
if (offset + size > mbref.getBufferSize())
error(path + ": slice extends beyond end of file");
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
}
error("unable to find matching architecture in " + path);
return None;
}
InputFile::InputFile(Kind kind, const InterfaceFile &interface)
: id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
template <class Section>
void ObjFile::parseSections(ArrayRef<Section> sections) {
subsections.reserve(sections.size());
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
for (const Section &sec : sections) {
StringRef name =
StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
StringRef segname =
StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
: buf + sec.offset,
static_cast<size_t>(sec.size)};
if (sec.align >= 32) {
error("alignment " + std::to_string(sec.align) + " of section " + name +
" is too large");
subsections.push_back({});
continue;
}
uint32_t align = 1 << sec.align;
uint32_t flags = sec.flags;
if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
(config->dedupLiterals && isWordLiteralSection(sec.flags))) {
if (sec.nreloc && config->dedupLiterals)
fatal(toString(this) + " contains relocations in " + sec.segname + "," +
sec.sectname +
", so LLD cannot deduplicate literals. Try re-running without "
"--deduplicate-literals.");
InputSection *isec;
if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
isec =
make<CStringInputSection>(segname, name, this, data, align, flags);
// FIXME: parallelize this?
cast<CStringInputSection>(isec)->splitIntoPieces();
} else {
isec = make<WordLiteralInputSection>(segname, name, this, data, align,
flags);
}
subsections.push_back({{0, isec}});
} else if (config->icfLevel != ICFLevel::none &&
(name == section_names::cfString &&
segname == segment_names::data)) {
uint64_t literalSize = target->wordSize == 8 ? 32 : 16;
subsections.push_back({});
SubsectionMap &subsecMap = subsections.back();
for (uint64_t off = 0; off < data.size(); off += literalSize)
subsecMap.push_back(
{off, make<ConcatInputSection>(segname, name, this,
data.slice(off, literalSize), align,
flags)});
} else {
auto *isec =
make<ConcatInputSection>(segname, name, this, data, align, flags);
if (!(isDebugSection(isec->getFlags()) &&
isec->getSegName() == segment_names::dwarf)) {
subsections.push_back({{0, isec}});
} else {
// Instead of emitting DWARF sections, we emit STABS symbols to the
// object files that contain them. We filter them out early to avoid
// parsing their relocations unnecessarily. But we must still push an
// empty map to ensure the indices line up for the remaining sections.
subsections.push_back({});
debugSections.push_back(isec);
}
}
}
}
// Find the subsection corresponding to the greatest section offset that is <=
// that of the given offset.
//
// offset: an offset relative to the start of the original InputSection (before
// any subsection splitting has occurred). It will be updated to represent the
// same location as an offset relative to the start of the containing
// subsection.
static InputSection *findContainingSubsection(SubsectionMap &map,
uint64_t *offset) {
auto it = std::prev(llvm::upper_bound(
map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) {
return value < subsecEntry.offset;
}));
*offset -= it->offset;
return it->isec;
}
template <class Section>
static bool validateRelocationInfo(InputFile *file, const Section &sec,
relocation_info rel) {
const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
bool valid = true;
auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
valid = false;
return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
std::to_string(rel.r_address) + " of " + sec.segname + "," +
sec.sectname + " in " + toString(file))
.str();
};
if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
error(message("must be extern"));
if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
"be PC-relative"));
if (isThreadLocalVariables(sec.flags) &&
!relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
error(message("not allowed in thread-local section, must be UNSIGNED"));
if (rel.r_length < 2 || rel.r_length > 3 ||
!relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
error(message("has width " + std::to_string(1 << rel.r_length) +
" bytes, but must be " +
widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
" bytes"));
}
return valid;
}
template <class Section>
void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders,
const Section &sec, SubsectionMap &subsecMap) {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
ArrayRef<relocation_info> relInfos(
reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
auto subsecIt = subsecMap.rbegin();
for (size_t i = 0; i < relInfos.size(); i++) {
// Paired relocations serve as Mach-O's method for attaching a
// supplemental datum to a primary relocation record. ELF does not
// need them because the *_RELOC_RELA records contain the extra
// addend field, vs. *_RELOC_REL which omit the addend.
//
// The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
// and the paired *_RELOC_UNSIGNED record holds the minuend. The
// datum for each is a symbolic address. The result is the offset
// between two addresses.
//
// The ARM64_RELOC_ADDEND record holds the addend, and the paired
// ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
// base symbolic address.
//
// Note: X86 does not use *_RELOC_ADDEND because it can embed an
// addend into the instruction stream. On X86, a relocatable address
// field always occupies an entire contiguous sequence of byte(s),
// so there is no need to merge opcode bits with address
// bits. Therefore, it's easy and convenient to store addends in the
// instruction-stream bytes that would otherwise contain zeroes. By
// contrast, RISC ISAs such as ARM64 mix opcode bits with with
// address bits so that bitwise arithmetic is necessary to extract
// and insert them. Storing addends in the instruction stream is
// possible, but inconvenient and more costly at link time.
int64_t pairedAddend = 0;
relocation_info relInfo = relInfos[i];
if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
relInfo = relInfos[++i];
}
assert(i < relInfos.size());
if (!validateRelocationInfo(this, sec, relInfo))
continue;
if (relInfo.r_address & R_SCATTERED)
fatal("TODO: Scattered relocations not supported");
bool isSubtrahend =
target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
assert(!(embeddedAddend && pairedAddend));
int64_t totalAddend = pairedAddend + embeddedAddend;
Reloc r;
r.type = relInfo.r_type;
r.pcrel = relInfo.r_pcrel;
r.length = relInfo.r_length;
r.offset = relInfo.r_address;
if (relInfo.r_extern) {
r.referent = symbols[relInfo.r_symbolnum];
r.addend = isSubtrahend ? 0 : totalAddend;
} else {
assert(!isSubtrahend);
const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
uint64_t referentOffset;
if (relInfo.r_pcrel) {
// The implicit addend for pcrel section relocations is the pcrel offset
// in terms of the addresses in the input file. Here we adjust it so
// that it describes the offset from the start of the referent section.
// FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
// have pcrel section relocations. We may want to factor this out into
// the arch-specific .cpp file.
assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
referentOffset =
sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
} else {
// The addend for a non-pcrel relocation is its absolute address.
referentOffset = totalAddend - referentSec.addr;
}
SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
r.addend = referentOffset;
}
// Find the subsection that this relocation belongs to.
// Though not required by the Mach-O format, clang and gcc seem to emit
// relocations in order, so let's take advantage of it. However, ld64 emits
// unsorted relocations (in `-r` mode), so we have a fallback for that
// uncommon case.
InputSection *subsec;
while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset)
++subsecIt;
if (subsecIt == subsecMap.rend() ||
subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
subsec = findContainingSubsection(subsecMap, &r.offset);
// Now that we know the relocs are unsorted, avoid trying the 'fast path'
// for the other relocations.
subsecIt = subsecMap.rend();
} else {
subsec = subsecIt->isec;
r.offset -= subsecIt->offset;
}
subsec->relocs.push_back(r);
if (isSubtrahend) {
relocation_info minuendInfo = relInfos[++i];
// SUBTRACTOR relocations should always be followed by an UNSIGNED one
// attached to the same address.
assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
relInfo.r_address == minuendInfo.r_address);
Reloc p;
p.type = minuendInfo.r_type;
if (minuendInfo.r_extern) {
p.referent = symbols[minuendInfo.r_symbolnum];
p.addend = totalAddend;
} else {
uint64_t referentOffset =
totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
SubsectionMap &referentSubsecMap =
subsections[minuendInfo.r_symbolnum - 1];
p.referent =
findContainingSubsection(referentSubsecMap, &referentOffset);
p.addend = referentOffset;
}
subsec->relocs.push_back(p);
}
}
}
template <class NList>
static macho::Symbol *createDefined(const NList &sym, StringRef name,
InputSection *isec, uint64_t value,
uint64_t size) {
// Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
// N_EXT: Global symbols. These go in the symbol table during the link,
// and also in the export table of the output so that the dynamic
// linker sees them.
// N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
// symbol table during the link so that duplicates are
// either reported (for non-weak symbols) or merged
// (for weak symbols), but they do not go in the export
// table of the output.
// N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
// object files) may produce them. LLD does not yet support -r.
// These are translation-unit scoped, identical to the `0` case.
// 0: Translation-unit scoped. These are not in the symbol table during
// link, and not in the export table of the output either.
bool isWeakDefCanBeHidden =
(sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
if (sym.n_type & N_EXT) {
bool isPrivateExtern = sym.n_type & N_PEXT;
// lld's behavior for merging symbols is slightly different from ld64:
// ld64 picks the winning symbol based on several criteria (see
// pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
// just merges metadata and keeps the contents of the first symbol
// with that name (see SymbolTable::addDefined). For:
// * inline function F in a TU built with -fvisibility-inlines-hidden
// * and inline function F in another TU built without that flag
// ld64 will pick the one from the file built without
// -fvisibility-inlines-hidden.
// lld will instead pick the one listed first on the link command line and
// give it visibility as if the function was built without
// -fvisibility-inlines-hidden.
// If both functions have the same contents, this will have the same
// behavior. If not, it won't, but the input had an ODR violation in
// that case.
//
// Similarly, merging a symbol
// that's isPrivateExtern and not isWeakDefCanBeHidden with one
// that's not isPrivateExtern but isWeakDefCanBeHidden technically
// should produce one
// that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
// with ld64's semantics, because it means the non-private-extern
// definition will continue to take priority if more private extern
// definitions are encountered. With lld's semantics there's no observable
// difference between a symbol that's isWeakDefCanBeHidden or one that's
// privateExtern -- neither makes it into the dynamic symbol table. So just
// promote isWeakDefCanBeHidden to isPrivateExtern here.
if (isWeakDefCanBeHidden)
isPrivateExtern = true;
return symtab->addDefined(
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
}
assert(!isWeakDefCanBeHidden &&
"weak_def_can_be_hidden on already-hidden symbol?");
return make<Defined>(
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
/*isExternal=*/false, /*isPrivateExtern=*/false,
sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
sym.n_desc & N_NO_DEAD_STRIP);
}
// Absolute symbols are defined symbols that do not have an associated
// InputSection. They cannot be weak.
template <class NList>
static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
StringRef name) {
if (sym.n_type & N_EXT) {
return symtab->addDefined(
name, file, nullptr, sym.n_value, /*size=*/0,
/*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
/*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP);
}
return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
/*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false,
sym.n_desc & N_ARM_THUMB_DEF,
/*isReferencedDynamically=*/false,
sym.n_desc & N_NO_DEAD_STRIP);
}
template <class NList>
macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
StringRef name) {
uint8_t type = sym.n_type & N_TYPE;
switch (type) {
case N_UNDF:
return sym.n_value == 0
? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
: symtab->addCommon(name, this, sym.n_value,
1 << GET_COMM_ALIGN(sym.n_desc),
sym.n_type & N_PEXT);
case N_ABS:
return createAbsolute(sym, this, name);
case N_PBUD:
case N_INDR:
error("TODO: support symbols of type " + std::to_string(type));
return nullptr;
case N_SECT:
llvm_unreachable(
"N_SECT symbols should not be passed to parseNonSectionSymbol");
default:
llvm_unreachable("invalid symbol type");
}
}
template <class NList>
static bool isUndef(const NList &sym) {
return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
}
template <class LP>
void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
ArrayRef<typename LP::nlist> nList,
const char *strtab, bool subsectionsViaSymbols) {
using NList = typename LP::nlist;
// Groups indices of the symbols by the sections that contain them.
std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size());
symbols.resize(nList.size());
SmallVector<unsigned, 32> undefineds;
for (uint32_t i = 0; i < nList.size(); ++i) {
const NList &sym = nList[i];
// Ignore debug symbols for now.
// FIXME: may need special handling.
if (sym.n_type & N_STAB)
continue;
StringRef name = strtab + sym.n_strx;
if ((sym.n_type & N_TYPE) == N_SECT) {
SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
// parseSections() may have chosen not to parse this section.
if (subsecMap.empty())
continue;
symbolsBySection[sym.n_sect - 1].push_back(i);
} else if (isUndef(sym)) {
undefineds.push_back(i);
} else {
symbols[i] = parseNonSectionSymbol(sym, name);
}
}
for (size_t i = 0; i < subsections.size(); ++i) {
SubsectionMap &subsecMap = subsections[i];
if (subsecMap.empty())
continue;
std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
uint64_t sectionAddr = sectionHeaders[i].addr;
uint32_t sectionAlign = 1u << sectionHeaders[i].align;
InputSection *isec = subsecMap.back().isec;
// __cfstring has already been split into subsections during
// parseSections(), so we simply need to match Symbols to the corresponding
// subsection here.
if (config->icfLevel != ICFLevel::none && isCfStringSection(isec)) {
for (size_t j = 0; j < symbolIndices.size(); ++j) {
uint32_t symIndex = symbolIndices[j];
const NList &sym = nList[symIndex];
StringRef name = strtab + sym.n_strx;
uint64_t symbolOffset = sym.n_value - sectionAddr;
InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset);
if (symbolOffset != 0) {
error(toString(this) + ": __cfstring contains symbol " + name +
" at misaligned offset");
continue;
}
symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
}
continue;
}
// Calculate symbol sizes and create subsections by splitting the sections
// along symbol boundaries.
// We populate subsecMap by repeatedly splitting the last (highest address)
// subsection.
llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
return nList[lhs].n_value < nList[rhs].n_value;
});
SubsectionEntry subsecEntry = subsecMap.back();
for (size_t j = 0; j < symbolIndices.size(); ++j) {
uint32_t symIndex = symbolIndices[j];
const NList &sym = nList[symIndex];
StringRef name = strtab + sym.n_strx;
InputSection *isec = subsecEntry.isec;
uint64_t subsecAddr = sectionAddr + subsecEntry.offset;
size_t symbolOffset = sym.n_value - subsecAddr;
uint64_t symbolSize =
j + 1 < symbolIndices.size()
? nList[symbolIndices[j + 1]].n_value - sym.n_value
: isec->data.size() - symbolOffset;
// There are 4 cases where we do not need to create a new subsection:
// 1. If the input file does not use subsections-via-symbols.
// 2. Multiple symbols at the same address only induce one subsection.
// (The symbolOffset == 0 check covers both this case as well as
// the first loop iteration.)
// 3. Alternative entry points do not induce new subsections.
// 4. If we have a literal section (e.g. __cstring and __literal4).
if (!subsectionsViaSymbols || symbolOffset == 0 ||
sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
symbols[symIndex] =
createDefined(sym, name, isec, symbolOffset, symbolSize);
continue;
}
auto *concatIsec = cast<ConcatInputSection>(isec);
auto *nextIsec = make<ConcatInputSection>(*concatIsec);
nextIsec->numRefs = 0;
nextIsec->wasCoalesced = false;
if (isZeroFill(isec->getFlags())) {
// Zero-fill sections have NULL data.data() non-zero data.size()
nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
isec->data = {nullptr, symbolOffset};
} else {
nextIsec->data = isec->data.slice(symbolOffset);
isec->data = isec->data.slice(0, symbolOffset);
}
// By construction, the symbol will be at offset zero in the new
// subsection.
symbols[symIndex] =
createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
// TODO: ld64 appears to preserve the original alignment as well as each
// subsection's offset from the last aligned address. We should consider
// emulating that behavior.
nextIsec->align = MinAlign(sectionAlign, sym.n_value);
subsecMap.push_back({sym.n_value - sectionAddr, nextIsec});
subsecEntry = subsecMap.back();
}
}
// Undefined symbols can trigger recursive fetch from Archives due to
// LazySymbols. Process defined symbols first so that the relative order
// between a defined symbol and an undefined symbol does not change the
// symbol resolution behavior. In addition, a set of interconnected symbols
// will all be resolved to the same file, instead of being resolved to
// different files.
for (unsigned i : undefineds) {
const NList &sym = nList[i];
StringRef name = strtab + sym.n_strx;
symbols[i] = parseNonSectionSymbol(sym, name);
}
}
OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
StringRef sectName)
: InputFile(OpaqueKind, mb) {
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
ConcatInputSection *isec =
make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16),
/*file=*/this, data);
isec->live = true;
subsections.push_back({{0, isec}});
}
ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
: InputFile(ObjKind, mb), modTime(modTime) {
this->archiveName = std::string(archiveName);
if (target->wordSize == 8)
parse<LP64>();
else
parse<ILP32>();
}
template <class LP> void ObjFile::parse() {
using Header = typename LP::mach_header;
using SegmentCommand = typename LP::segment_command;
using Section = typename LP::section;
using NList = typename LP::nlist;
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
if (arch != config->arch()) {
error(toString(this) + " has architecture " + getArchitectureName(arch) +
" which is incompatible with target architecture " +
getArchitectureName(config->arch()));
return;
}
if (!checkCompatibility(this))
return;
for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
StringRef data{reinterpret_cast<const char *>(cmd + 1),
cmd->cmdsize - sizeof(linker_option_command)};
parseLCLinkerOption(this, cmd->count, data);
}
ArrayRef<Section> sectionHeaders;
if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
sectionHeaders =
ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects};
parseSections(sectionHeaders);
}
// TODO: Error on missing LC_SYMTAB?
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
auto *c = reinterpret_cast<const symtab_command *>(cmd);
ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
c->nsyms);
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
}
// The relocations may refer to the symbols, so we parse them after we have
// parsed all the symbols.
for (size_t i = 0, n = subsections.size(); i < n; ++i)
if (!subsections[i].empty())
parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]);
parseDebugInfo();
if (config->emitDataInCodeInfo)
parseDataInCode();
}
void ObjFile::parseDebugInfo() {
std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
if (!dObj)
return;
auto *ctx = make<DWARFContext>(
std::move(dObj), "",
[&](Error err) {
warn(toString(this) + ": " + toString(std::move(err)));
},
[&](Error warning) {
warn(toString(this) + ": " + toString(std::move(warning)));
});
// TODO: Since object files can contain a lot of DWARF info, we should verify
// that we are parsing just the info we need
const DWARFContext::compile_unit_range &units = ctx->compile_units();
// FIXME: There can be more than one compile unit per object file. See
// PR48637.
auto it = units.begin();
compileUnit = it->get();
}
void ObjFile::parseDataInCode() {
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
if (!cmd)
return;
const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
dataInCodeEntries = {
reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
c->datasize / sizeof(data_in_code_entry)};
assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
const data_in_code_entry &rhs) {
return lhs.offset < rhs.offset;
}));
}
// The path can point to either a dylib or a .tbd file.
static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
Optional<MemoryBufferRef> mbref = readFile(path);
if (!mbref) {
error("could not read dylib file at " + path);
return nullptr;
}
return loadDylib(*mbref, umbrella);
}
// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
// the first document storing child pointers to the rest of them. When we are
// processing a given TBD file, we store that top-level document in
// currentTopLevelTapi. When processing re-exports, we search its children for
// potentially matching documents in the same TBD file. Note that the children
// themselves don't point to further documents, i.e. this is a two-level tree.
//
// Re-exports can either refer to on-disk files, or to documents within .tbd
// files.
static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
const InterfaceFile *currentTopLevelTapi) {
// Search order:
// 1. Install name basename in -F / -L directories.
{
StringRef stem = path::stem(path);
SmallString<128> frameworkName;
path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
bool isFramework = path.endswith(frameworkName);
if (isFramework) {
for (StringRef dir : config->frameworkSearchPaths) {
SmallString<128> candidate = dir;
path::append(candidate, frameworkName);
if (Optional<std::string> dylibPath = resolveDylibPath(candidate))
return loadDylib(*dylibPath, umbrella);
}
} else if (Optional<StringRef> dylibPath = findPathCombination(
stem, config->librarySearchPaths, {".tbd", ".dylib"}))
return loadDylib(*dylibPath, umbrella);
}
// 2. As absolute path.
if (path::is_absolute(path, path::Style::posix))
for (StringRef root : config->systemLibraryRoots)
if (Optional<std::string> dylibPath =
resolveDylibPath((root + path).str()))
return loadDylib(*dylibPath, umbrella);
// 3. As relative path.
// TODO: Handle -dylib_file
// Replace @executable_path, @loader_path, @rpath prefixes in install name.
SmallString<128> newPath;
if (config->outputType == MH_EXECUTE &&
path.consume_front("@executable_path/")) {
// ld64 allows overriding this with the undocumented flag -executable_path.
// lld doesn't currently implement that flag.
// FIXME: Consider using finalOutput instead of outputFile.
path::append(newPath, path::parent_path(config->outputFile), path);
path = newPath;
} else if (path.consume_front("@loader_path/")) {
fs::real_path(umbrella->getName(), newPath);
path::remove_filename(newPath);
path::append(newPath, path);
path = newPath;
} else if (path.startswith("@rpath/")) {
for (StringRef rpath : umbrella->rpaths) {
newPath.clear();
if (rpath.consume_front("@loader_path/")) {
fs::real_path(umbrella->getName(), newPath);
path::remove_filename(newPath);
}
path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
if (Optional<std::string> dylibPath = resolveDylibPath(newPath))
return loadDylib(*dylibPath, umbrella);
}
}
// FIXME: Should this be further up?
if (currentTopLevelTapi) {
for (InterfaceFile &child :
make_pointee_range(currentTopLevelTapi->documents())) {
assert(child.documents().empty());
if (path == child.getInstallName()) {
auto file = make<DylibFile>(child, umbrella);
file->parseReexports(child);
return file;
}
}
}
if (Optional<std::string> dylibPath = resolveDylibPath(path))
return loadDylib(*dylibPath, umbrella);
return nullptr;
}
// If a re-exported dylib is public (lives in /usr/lib or
// /System/Library/Frameworks), then it is considered implicitly linked: we
// should bind to its symbols directly instead of via the re-exporting umbrella
// library.
static bool isImplicitlyLinked(StringRef path) {
if (!config->implicitDylibs)
return false;
if (path::parent_path(path) == "/usr/lib")
return true;
// Match /System/Library/Frameworks/$FOO.framework/**/$FOO
if (path.consume_front("/System/Library/Frameworks/")) {
StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
return path::filename(path) == frameworkName;
}
return false;
}
static void loadReexport(StringRef path, DylibFile *umbrella,
const InterfaceFile *currentTopLevelTapi) {
DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
if (!reexport)
error("unable to locate re-export with install name " + path);
}
DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
bool isBundleLoader)
: InputFile(DylibKind, mb), refState(RefState::Unreferenced),
isBundleLoader(isBundleLoader) {
assert(!isBundleLoader || !umbrella);
if (umbrella == nullptr)
umbrella = this;
this->umbrella = umbrella;
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
// Initialize installName.
if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
auto *c = reinterpret_cast<const dylib_command *>(cmd);
currentVersion = read32le(&c->dylib.current_version);
compatibilityVersion = read32le(&c->dylib.compatibility_version);
installName =
reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
} else if (!isBundleLoader) {
// macho_executable and macho_bundle don't have LC_ID_DYLIB,
// so it's OK.
error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
return;
}
if (config->printEachFile)
message(toString(this));
inputFiles.insert(this);
deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
if (!checkCompatibility(this))
return;
checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
rpaths.push_back(rpath);
}
// Initialize symbols.
exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
parseTrie(buf + c->export_off, c->export_size,
[&](const Twine &name, uint64_t flags) {
StringRef savedName = saver.save(name);
if (handleLDSymbol(savedName))
return;
bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
symbols.push_back(symtab->addDylib(savedName, exportingFile,
isWeakDef, isTlv));
});
} else {
error("LC_DYLD_INFO_ONLY not found in " + toString(this));
return;
}
}
void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
target->headerSize;
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
auto *cmd = reinterpret_cast<const load_command *>(p);
p += cmd->cmdsize;
if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
cmd->cmd == LC_REEXPORT_DYLIB) {
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
StringRef reexportPath =
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
loadReexport(reexportPath, exportingFile, nullptr);
}
// FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
// LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
// MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
if (config->namespaceKind == NamespaceKind::flat &&
cmd->cmd == LC_LOAD_DYLIB) {
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
StringRef dylibPath =
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
if (!dylib)
error(Twine("unable to locate library '") + dylibPath +
"' loaded from '" + toString(this) + "' for -flat_namespace");
}
}
}
// Some versions of XCode ship with .tbd files that don't have the right
// platform settings.
static constexpr std::array<StringRef, 3> skipPlatformChecks{
"/usr/lib/system/libsystem_kernel.dylib",
"/usr/lib/system/libsystem_platform.dylib",
"/usr/lib/system/libsystem_pthread.dylib"};
DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
bool isBundleLoader)
: InputFile(DylibKind, interface), refState(RefState::Unreferenced),
isBundleLoader(isBundleLoader) {
// FIXME: Add test for the missing TBD code path.
if (umbrella == nullptr)
umbrella = this;
this->umbrella = umbrella;
installName = saver.save(interface.getInstallName());
compatibilityVersion = interface.getCompatibilityVersion().rawValue();
currentVersion = interface.getCurrentVersion().rawValue();
if (config->printEachFile)
message(toString(this));
inputFiles.insert(this);
if (!is_contained(skipPlatformChecks, installName) &&
!is_contained(interface.targets(), config->platformInfo.target)) {
error(toString(this) + " is incompatible with " +
std::string(config->platformInfo.target));
return;
}
checkAppExtensionSafety(interface.isApplicationExtensionSafe());
exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
auto addSymbol = [&](const Twine &name) -> void {
symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
/*isWeakDef=*/false,
/*isTlv=*/false));
};
// TODO(compnerd) filter out symbols based on the target platform
// TODO: handle weak defs, thread locals
for (const auto *symbol : interface.symbols()) {
if (!symbol->getArchitectures().has(config->arch()))
continue;
if (handleLDSymbol(symbol->getName()))
continue;
switch (symbol->getKind()) {
case SymbolKind::GlobalSymbol:
addSymbol(symbol->getName());
break;
case SymbolKind::ObjectiveCClass:
// XXX ld64 only creates these symbols when -ObjC is passed in. We may
// want to emulate that.
addSymbol(objc::klass + symbol->getName());
addSymbol(objc::metaclass + symbol->getName());
break;
case SymbolKind::ObjectiveCClassEHType:
addSymbol(objc::ehtype + symbol->getName());
break;
case SymbolKind::ObjectiveCInstanceVariable:
addSymbol(objc::ivar + symbol->getName());
break;
}
}
}
void DylibFile::parseReexports(const InterfaceFile &interface) {
const InterfaceFile *topLevel =
interface.getParent() == nullptr ? &interface : interface.getParent();
for (InterfaceFileRef intfRef : interface.reexportedLibraries()) {
InterfaceFile::const_target_range targets = intfRef.targets();
if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
is_contained(targets, config->platformInfo.target))
loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
}
}
// $ld$ symbols modify the properties/behavior of the library (e.g. its install
// name, compatibility version or hide/add symbols) for specific target
// versions.
bool DylibFile::handleLDSymbol(StringRef originalName) {
if (!originalName.startswith("$ld$"))
return false;
StringRef action;
StringRef name;
std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
if (action == "previous")
handleLDPreviousSymbol(name, originalName);
else if (action == "install_name")
handleLDInstallNameSymbol(name, originalName);
return true;
}
void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
// originalName: $ld$ previous $ <installname> $ <compatversion> $
// <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
StringRef installName;
StringRef compatVersion;
StringRef platformStr;
StringRef startVersion;
StringRef endVersion;
StringRef symbolName;
StringRef rest;
std::tie(installName, name) = name.split('$');
std::tie(compatVersion, name) = name.split('$');
std::tie(platformStr, name) = name.split('$');
std::tie(startVersion, name) = name.split('$');
std::tie(endVersion, name) = name.split('$');
std::tie(symbolName, rest) = name.split('$');
// TODO: ld64 contains some logic for non-empty symbolName as well.
if (!symbolName.empty())
return;
unsigned platform;
if (platformStr.getAsInteger(10, platform) ||
platform != static_cast<unsigned>(config->platform()))
return;
VersionTuple start;
if (start.tryParse(startVersion)) {
warn("failed to parse start version, symbol '" + originalName +
"' ignored");
return;
}
VersionTuple end;
if (end.tryParse(endVersion)) {
warn("failed to parse end version, symbol '" + originalName + "' ignored");
return;
}
if (config->platformInfo.minimum < start ||
config->platformInfo.minimum >= end)
return;
this->installName = saver.save(installName);
if (!compatVersion.empty()) {
VersionTuple cVersion;
if (cVersion.tryParse(compatVersion)) {
warn("failed to parse compatibility version, symbol '" + originalName +
"' ignored");
return;
}
compatibilityVersion = encodeVersion(cVersion);
}
}
void DylibFile::handleLDInstallNameSymbol(StringRef name,
StringRef originalName) {
// originalName: $ld$ install_name $ os<version> $ install_name
StringRef condition, installName;
std::tie(condition, installName) = name.split('$');
VersionTuple version;
if (!condition.consume_front("os") || version.tryParse(condition))
warn("failed to parse os version, symbol '" + originalName + "' ignored");
else if (version == config->platformInfo.minimum)
this->installName = saver.save(installName);
}
void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
if (config->applicationExtension && !dylibIsAppExtensionSafe)
warn("using '-application_extension' with unsafe dylib: " + toString(this));
}
ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
: InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
for (const object::Archive::Symbol &sym : file->symbols())
symtab->addLazy(sym.getName(), this, sym);
}
void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
object::Archive::Child c =
CHECK(sym.getMember(), toString(this) +
": could not get the member for symbol " +
toMachOString(sym));
if (!seen.insert(c.getChildOffset()).second)
return;
MemoryBufferRef mb =
CHECK(c.getMemoryBufferRef(),
toString(this) +
": could not get the buffer for the member defining symbol " +
toMachOString(sym));
if (tar && c.getParent()->isThin())
tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
uint32_t modTime = toTimeT(
CHECK(c.getLastModified(), toString(this) +
": could not get the modification time "
"for the member defining symbol " +
toMachOString(sym)));
// `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
// and become invalid after that call. Copy it to the stack so we can refer
// to it later.
const object::Archive::Symbol symCopy = sym;
if (Optional<InputFile *> file = loadArchiveMember(
mb, modTime, getName(), /*objCOnly=*/false, c.getChildOffset())) {
inputFiles.insert(*file);
// ld64 doesn't demangle sym here even with -demangle.
// Match that: intentionally don't call toMachOString().
printArchiveMemberLoad(symCopy.getName(), *file);
}
}
static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
BitcodeFile &file) {
StringRef name = saver.save(objSym.getName());
// TODO: support weak references
if (objSym.isUndefined())
return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
assert(!objSym.isCommon() && "TODO: support common symbols in LTO");
// TODO: Write a test demonstrating why computing isPrivateExtern before
// LTO compilation is important.
bool isPrivateExtern = false;
switch (objSym.getVisibility()) {
case GlobalValue::HiddenVisibility:
isPrivateExtern = true;
break;
case GlobalValue::ProtectedVisibility:
error(name + " has protected visibility, which is not supported by Mach-O");
break;
case GlobalValue::DefaultVisibility:
break;
}
return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
/*size=*/0, objSym.isWeak(), isPrivateExtern,
/*isThumb=*/false,
/*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
}
BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
uint64_t offsetInArchive)
: InputFile(BitcodeKind, mb) {
std::string path = mb.getBufferIdentifier().str();
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
// name. If two members with the same name are provided, this causes a
// collision and ThinLTO can't proceed.
// So, we append the archive name to disambiguate two members with the same
// name from multiple different archives, and offset within the archive to
// disambiguate two members of the same name from a single archive.
MemoryBufferRef mbref(
mb.getBuffer(),
saver.save(archiveName.empty() ? path
: archiveName + sys::path::filename(path) +
utostr(offsetInArchive)));
obj = check(lto::InputFile::create(mbref));
// Convert LTO Symbols to LLD Symbols in order to perform resolution. The
// "winning" symbol will then be marked as Prevailing at LTO compilation
// time.
for (const lto::InputFile::Symbol &objSym : obj->symbols())
symbols.push_back(createBitcodeSymbol(objSym, *this));
}
template void ObjFile::parse<LP64>();
|