1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
|
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary stateless implementation of the
// Alias Analysis interface that implements identities (two different
// globals cannot alias, etc), but does no stateful analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/PhiValues.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/KnownBits.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <utility>
#define DEBUG_TYPE "basicaa"
using namespace llvm;
/// Enable analysis of recursive PHI nodes.
static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
cl::init(true));
/// By default, even on 32-bit architectures we use 64-bit integers for
/// calculations. This will allow us to more-aggressively decompose indexing
/// expressions calculated using i64 values (e.g., long long in C) which is
/// common enough to worry about.
static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
cl::Hidden, cl::init(true));
static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
cl::Hidden, cl::init(false));
/// SearchLimitReached / SearchTimes shows how often the limit of
/// to decompose GEPs is reached. It will affect the precision
/// of basic alias analysis.
STATISTIC(SearchLimitReached, "Number of times the limit to "
"decompose GEPs is reached");
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
/// Cutoff after which to stop analysing a set of phi nodes potentially involved
/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
/// careful with value equivalence. We use reachability to make sure a value
/// cannot be involved in a cycle.
const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
// The max limit of the search depth in DecomposeGEPExpression() and
// getUnderlyingObject(), both functions need to use the same search
// depth otherwise the algorithm in aliasGEP will assert.
static const unsigned MaxLookupSearchDepth = 6;
bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv) {
// We don't care if this analysis itself is preserved, it has no state. But
// we need to check that the analyses it depends on have been. Note that we
// may be created without handles to some analyses and in that case don't
// depend on them.
if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
(DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
(PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
return true;
// Otherwise this analysis result remains valid.
return false;
}
//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//
/// Returns true if the pointer is one which would have been considered an
/// escape by isNonEscapingLocalObject.
static bool isEscapeSource(const Value *V) {
if (isa<CallBase>(V))
return true;
if (isa<Argument>(V))
return true;
// The load case works because isNonEscapingLocalObject considers all
// stores to be escapes (it passes true for the StoreCaptures argument
// to PointerMayBeCaptured).
if (isa<LoadInst>(V))
return true;
// The inttoptr case works because isNonEscapingLocalObject considers all
// means of converting or equating a pointer to an int (ptrtoint, ptr store
// which could be followed by an integer load, ptr<->int compare) as
// escaping, and objects located at well-known addresses via platform-specific
// means cannot be considered non-escaping local objects.
if (isa<IntToPtrInst>(V))
return true;
return false;
}
/// Returns the size of the object specified by V or UnknownSize if unknown.
static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
const TargetLibraryInfo &TLI,
bool NullIsValidLoc,
bool RoundToAlign = false) {
uint64_t Size;
ObjectSizeOpts Opts;
Opts.RoundToAlign = RoundToAlign;
Opts.NullIsUnknownSize = NullIsValidLoc;
if (getObjectSize(V, Size, DL, &TLI, Opts))
return Size;
return MemoryLocation::UnknownSize;
}
/// Returns true if we can prove that the object specified by V is smaller than
/// Size.
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
const DataLayout &DL,
const TargetLibraryInfo &TLI,
bool NullIsValidLoc) {
// Note that the meanings of the "object" are slightly different in the
// following contexts:
// c1: llvm::getObjectSize()
// c2: llvm.objectsize() intrinsic
// c3: isObjectSmallerThan()
// c1 and c2 share the same meaning; however, the meaning of "object" in c3
// refers to the "entire object".
//
// Consider this example:
// char *p = (char*)malloc(100)
// char *q = p+80;
//
// In the context of c1 and c2, the "object" pointed by q refers to the
// stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
//
// However, in the context of c3, the "object" refers to the chunk of memory
// being allocated. So, the "object" has 100 bytes, and q points to the middle
// the "object". In case q is passed to isObjectSmallerThan() as the 1st
// parameter, before the llvm::getObjectSize() is called to get the size of
// entire object, we should:
// - either rewind the pointer q to the base-address of the object in
// question (in this case rewind to p), or
// - just give up. It is up to caller to make sure the pointer is pointing
// to the base address the object.
//
// We go for 2nd option for simplicity.
if (!isIdentifiedObject(V))
return false;
// This function needs to use the aligned object size because we allow
// reads a bit past the end given sufficient alignment.
uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
/*RoundToAlign*/ true);
return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
}
/// Return the minimal extent from \p V to the end of the underlying object,
/// assuming the result is used in an aliasing query. E.g., we do use the query
/// location size and the fact that null pointers cannot alias here.
static uint64_t getMinimalExtentFrom(const Value &V,
const LocationSize &LocSize,
const DataLayout &DL,
bool NullIsValidLoc) {
// If we have dereferenceability information we know a lower bound for the
// extent as accesses for a lower offset would be valid. We need to exclude
// the "or null" part if null is a valid pointer.
bool CanBeNull, CanBeFreed;
uint64_t DerefBytes =
V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
DerefBytes = CanBeFreed ? 0 : DerefBytes;
// If queried with a precise location size, we assume that location size to be
// accessed, thus valid.
if (LocSize.isPrecise())
DerefBytes = std::max(DerefBytes, LocSize.getValue());
return DerefBytes;
}
/// Returns true if we can prove that the object specified by V has size Size.
static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
}
//===----------------------------------------------------------------------===//
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//
namespace {
/// Represents zext(sext(V)).
struct ExtendedValue {
const Value *V;
unsigned ZExtBits;
unsigned SExtBits;
explicit ExtendedValue(const Value *V, unsigned ZExtBits = 0,
unsigned SExtBits = 0)
: V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {}
unsigned getBitWidth() const {
return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits;
}
ExtendedValue withValue(const Value *NewV) const {
return ExtendedValue(NewV, ZExtBits, SExtBits);
}
ExtendedValue withZExtOfValue(const Value *NewV) const {
unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
NewV->getType()->getPrimitiveSizeInBits();
// zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
return ExtendedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0);
}
ExtendedValue withSExtOfValue(const Value *NewV) const {
unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
NewV->getType()->getPrimitiveSizeInBits();
// zext(sext(sext(NewV)))
return ExtendedValue(NewV, ZExtBits, SExtBits + ExtendBy);
}
APInt evaluateWith(APInt N) const {
assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
"Incompatible bit width");
if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
return N;
}
bool canDistributeOver(bool NUW, bool NSW) const {
// zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
// sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
return (!ZExtBits || NUW) && (!SExtBits || NSW);
}
};
/// Represents zext(sext(V)) * Scale + Offset.
struct LinearExpression {
ExtendedValue Val;
APInt Scale;
APInt Offset;
/// True if all operations in this expression are NSW.
bool IsNSW;
LinearExpression(const ExtendedValue &Val, const APInt &Scale,
const APInt &Offset, bool IsNSW)
: Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
LinearExpression(const ExtendedValue &Val) : Val(Val), IsNSW(true) {
unsigned BitWidth = Val.getBitWidth();
Scale = APInt(BitWidth, 1);
Offset = APInt(BitWidth, 0);
}
};
}
/// Analyzes the specified value as a linear expression: "A*V + B", where A and
/// B are constant integers.
static LinearExpression GetLinearExpression(
const ExtendedValue &Val, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, DominatorTree *DT) {
// Limit our recursion depth.
if (Depth == 6)
return Val;
if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
Val.evaluateWith(Const->getValue()), true);
if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
APInt RHS = Val.evaluateWith(RHSC->getValue());
// The only non-OBO case we deal with is or, and only limited to the
// case where it is both nuw and nsw.
bool NUW = true, NSW = true;
if (isa<OverflowingBinaryOperator>(BOp)) {
NUW &= BOp->hasNoUnsignedWrap();
NSW &= BOp->hasNoSignedWrap();
}
if (!Val.canDistributeOver(NUW, NSW))
return Val;
LinearExpression E(Val);
switch (BOp->getOpcode()) {
default:
// We don't understand this instruction, so we can't decompose it any
// further.
return Val;
case Instruction::Or:
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
// analyze it.
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
BOp, DT))
return Val;
LLVM_FALLTHROUGH;
case Instruction::Add: {
E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
Depth + 1, AC, DT);
E.Offset += RHS;
E.IsNSW &= NSW;
break;
}
case Instruction::Sub: {
E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
Depth + 1, AC, DT);
E.Offset -= RHS;
E.IsNSW &= NSW;
break;
}
case Instruction::Mul: {
E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
Depth + 1, AC, DT);
E.Offset *= RHS;
E.Scale *= RHS;
E.IsNSW &= NSW;
break;
}
case Instruction::Shl:
// We're trying to linearize an expression of the kind:
// shl i8 -128, 36
// where the shift count exceeds the bitwidth of the type.
// We can't decompose this further (the expression would return
// a poison value).
if (RHS.getLimitedValue() > Val.getBitWidth())
return Val;
E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
Depth + 1, AC, DT);
E.Offset <<= RHS.getLimitedValue();
E.Scale <<= RHS.getLimitedValue();
E.IsNSW &= NSW;
break;
}
return E;
}
}
if (isa<ZExtInst>(Val.V))
return GetLinearExpression(
Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
DL, Depth + 1, AC, DT);
if (isa<SExtInst>(Val.V))
return GetLinearExpression(
Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
DL, Depth + 1, AC, DT);
return Val;
}
/// To ensure a pointer offset fits in an integer of size PointerSize
/// (in bits) when that size is smaller than the maximum pointer size. This is
/// an issue, for example, in particular for 32b pointers with negative indices
/// that rely on two's complement wrap-arounds for precise alias information
/// where the maximum pointer size is 64b.
static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
return (Offset << ShiftBits).ashr(ShiftBits);
}
static unsigned getMaxPointerSize(const DataLayout &DL) {
unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
if (DoubleCalcBits) MaxPointerSize *= 2;
return MaxPointerSize;
}
/// If V is a symbolic pointer expression, decompose it into a base pointer
/// with a constant offset and a number of scaled symbolic offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As
/// such, the gep cannot necessarily be reconstructed from its decomposed form.
///
/// This function is capable of analyzing everything that getUnderlyingObject
/// can look through. To be able to do that getUnderlyingObject and
/// DecomposeGEPExpression must use the same search depth
/// (MaxLookupSearchDepth).
BasicAAResult::DecomposedGEP
BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
AssumptionCache *AC, DominatorTree *DT) {
// Limit recursion depth to limit compile time in crazy cases.
unsigned MaxLookup = MaxLookupSearchDepth;
SearchTimes++;
const Instruction *CxtI = dyn_cast<Instruction>(V);
unsigned MaxPointerSize = getMaxPointerSize(DL);
DecomposedGEP Decomposed;
Decomposed.Offset = APInt(MaxPointerSize, 0);
Decomposed.HasCompileTimeConstantScale = true;
do {
// See if this is a bitcast or GEP.
const Operator *Op = dyn_cast<Operator>(V);
if (!Op) {
// The only non-operator case we can handle are GlobalAliases.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->isInterposable()) {
V = GA->getAliasee();
continue;
}
}
Decomposed.Base = V;
return Decomposed;
}
if (Op->getOpcode() == Instruction::BitCast ||
Op->getOpcode() == Instruction::AddrSpaceCast) {
V = Op->getOperand(0);
continue;
}
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
if (!GEPOp) {
if (const auto *PHI = dyn_cast<PHINode>(V)) {
// Look through single-arg phi nodes created by LCSSA.
if (PHI->getNumIncomingValues() == 1) {
V = PHI->getIncomingValue(0);
continue;
}
} else if (const auto *Call = dyn_cast<CallBase>(V)) {
// CaptureTracking can know about special capturing properties of some
// intrinsics like launder.invariant.group, that can't be expressed with
// the attributes, but have properties like returning aliasing pointer.
// Because some analysis may assume that nocaptured pointer is not
// returned from some special intrinsic (because function would have to
// be marked with returns attribute), it is crucial to use this function
// because it should be in sync with CaptureTracking. Not using it may
// cause weird miscompilations where 2 aliasing pointers are assumed to
// noalias.
if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
V = RP;
continue;
}
}
Decomposed.Base = V;
return Decomposed;
}
// Track whether we've seen at least one in bounds gep, and if so, whether
// all geps parsed were in bounds.
if (Decomposed.InBounds == None)
Decomposed.InBounds = GEPOp->isInBounds();
else if (!GEPOp->isInBounds())
Decomposed.InBounds = false;
// Don't attempt to analyze GEPs over unsized objects.
if (!GEPOp->getSourceElementType()->isSized()) {
Decomposed.Base = V;
return Decomposed;
}
// Don't attempt to analyze GEPs if index scale is not a compile-time
// constant.
if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
Decomposed.Base = V;
Decomposed.HasCompileTimeConstantScale = false;
return Decomposed;
}
unsigned AS = GEPOp->getPointerAddressSpace();
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
gep_type_iterator GTI = gep_type_begin(GEPOp);
unsigned PointerSize = DL.getPointerSizeInBits(AS);
// Assume all GEP operands are constants until proven otherwise.
bool GepHasConstantOffset = true;
for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
I != E; ++I, ++GTI) {
const Value *Index = *I;
// Compute the (potentially symbolic) offset in bytes for this index.
if (StructType *STy = GTI.getStructTypeOrNull()) {
// For a struct, add the member offset.
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
if (FieldNo == 0)
continue;
Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
continue;
}
// For an array/pointer, add the element offset, explicitly scaled.
if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
if (CIdx->isZero())
continue;
Decomposed.Offset +=
DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
CIdx->getValue().sextOrTrunc(MaxPointerSize);
continue;
}
GepHasConstantOffset = false;
APInt Scale(MaxPointerSize,
DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
// If the integer type is smaller than the pointer size, it is implicitly
// sign extended to pointer size.
unsigned Width = Index->getType()->getIntegerBitWidth();
unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0;
LinearExpression LE = GetLinearExpression(
ExtendedValue(Index, 0, SExtBits), DL, 0, AC, DT);
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
// It can be the case that, even through C1*V+C2 does not overflow for
// relevant values of V, (C2*Scale) can overflow. In that case, we cannot
// decompose the expression in this way.
//
// FIXME: C1*Scale and the other operations in the decomposed
// (C1*Scale)*V+C2*Scale can also overflow. We should check for this
// possibility.
bool Overflow;
APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize)
.smul_ov(Scale, Overflow);
if (Overflow) {
LE = LinearExpression(ExtendedValue(Index, 0, SExtBits));
} else {
Decomposed.Offset += ScaledOffset;
Scale *= LE.Scale.sextOrTrunc(MaxPointerSize);
}
// If we already had an occurrence of this index variable, merge this
// scale into it. For example, we want to handle:
// A[x][x] -> x*16 + x*4 -> x*20
// This also ensures that 'x' only appears in the index list once.
for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
if (Decomposed.VarIndices[i].V == LE.Val.V &&
Decomposed.VarIndices[i].ZExtBits == LE.Val.ZExtBits &&
Decomposed.VarIndices[i].SExtBits == LE.Val.SExtBits) {
Scale += Decomposed.VarIndices[i].Scale;
Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
break;
}
}
// Make sure that we have a scale that makes sense for this target's
// pointer size.
Scale = adjustToPointerSize(Scale, PointerSize);
if (!!Scale) {
VariableGEPIndex Entry = {
LE.Val.V, LE.Val.ZExtBits, LE.Val.SExtBits, Scale, CxtI, LE.IsNSW};
Decomposed.VarIndices.push_back(Entry);
}
}
// Take care of wrap-arounds
if (GepHasConstantOffset)
Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
// Analyze the base pointer next.
V = GEPOp->getOperand(0);
} while (--MaxLookup);
// If the chain of expressions is too deep, just return early.
Decomposed.Base = V;
SearchLimitReached++;
return Decomposed;
}
/// Returns whether the given pointer value points to memory that is local to
/// the function, with global constants being considered local to all
/// functions.
bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
AAQueryInfo &AAQI, bool OrLocal) {
assert(Visited.empty() && "Visited must be cleared after use!");
unsigned MaxLookup = 8;
SmallVector<const Value *, 16> Worklist;
Worklist.push_back(Loc.Ptr);
do {
const Value *V = getUnderlyingObject(Worklist.pop_back_val());
if (!Visited.insert(V).second) {
Visited.clear();
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
}
// An alloca instruction defines local memory.
if (OrLocal && isa<AllocaInst>(V))
continue;
// A global constant counts as local memory for our purposes.
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
// Note: this doesn't require GV to be "ODR" because it isn't legal for a
// global to be marked constant in some modules and non-constant in
// others. GV may even be a declaration, not a definition.
if (!GV->isConstant()) {
Visited.clear();
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
}
continue;
}
// If both select values point to local memory, then so does the select.
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
// If all values incoming to a phi node point to local memory, then so does
// the phi.
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
// Don't bother inspecting phi nodes with many operands.
if (PN->getNumIncomingValues() > MaxLookup) {
Visited.clear();
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
}
append_range(Worklist, PN->incoming_values());
continue;
}
// Otherwise be conservative.
Visited.clear();
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
} while (!Worklist.empty() && --MaxLookup);
Visited.clear();
return Worklist.empty();
}
static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
return II && II->getIntrinsicID() == IID;
}
/// Returns the behavior when calling the given call site.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
if (Call->doesNotAccessMemory())
// Can't do better than this.
return FMRB_DoesNotAccessMemory;
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If the callsite knows it only reads memory, don't return worse
// than that.
if (Call->onlyReadsMemory())
Min = FMRB_OnlyReadsMemory;
else if (Call->doesNotReadMemory())
Min = FMRB_OnlyWritesMemory;
if (Call->onlyAccessesArgMemory())
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
else if (Call->onlyAccessesInaccessibleMemory())
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
else if (Call->onlyAccessesInaccessibleMemOrArgMem())
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
// If the call has operand bundles then aliasing attributes from the function
// it calls do not directly apply to the call. This can be made more precise
// in the future.
if (!Call->hasOperandBundles())
if (const Function *F = Call->getCalledFunction())
Min =
FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
return Min;
}
/// Returns the behavior when calling the given function. For use when the call
/// site is not known.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
// If the function declares it doesn't access memory, we can't do better.
if (F->doesNotAccessMemory())
return FMRB_DoesNotAccessMemory;
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If the function declares it only reads memory, go with that.
if (F->onlyReadsMemory())
Min = FMRB_OnlyReadsMemory;
else if (F->doesNotReadMemory())
Min = FMRB_OnlyWritesMemory;
if (F->onlyAccessesArgMemory())
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
else if (F->onlyAccessesInaccessibleMemory())
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
else if (F->onlyAccessesInaccessibleMemOrArgMem())
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
return Min;
}
/// Returns true if this is a writeonly (i.e Mod only) parameter.
static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
const TargetLibraryInfo &TLI) {
if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
return true;
// We can bound the aliasing properties of memset_pattern16 just as we can
// for memcpy/memset. This is particularly important because the
// LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
// whenever possible.
// FIXME Consider handling this in InferFunctionAttr.cpp together with other
// attributes.
LibFunc F;
if (Call->getCalledFunction() &&
TLI.getLibFunc(*Call->getCalledFunction(), F) &&
F == LibFunc_memset_pattern16 && TLI.has(F))
if (ArgIdx == 0)
return true;
// TODO: memset_pattern4, memset_pattern8
// TODO: _chk variants
// TODO: strcmp, strcpy
return false;
}
ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
unsigned ArgIdx) {
// Checking for known builtin intrinsics and target library functions.
if (isWriteOnlyParam(Call, ArgIdx, TLI))
return ModRefInfo::Mod;
if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
return ModRefInfo::Ref;
if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
return ModRefInfo::NoModRef;
return AAResultBase::getArgModRefInfo(Call, ArgIdx);
}
#ifndef NDEBUG
static const Function *getParent(const Value *V) {
if (const Instruction *inst = dyn_cast<Instruction>(V)) {
if (!inst->getParent())
return nullptr;
return inst->getParent()->getParent();
}
if (const Argument *arg = dyn_cast<Argument>(V))
return arg->getParent();
return nullptr;
}
static bool notDifferentParent(const Value *O1, const Value *O2) {
const Function *F1 = getParent(O1);
const Function *F2 = getParent(O2);
return !F1 || !F2 || F1 == F2;
}
#endif
AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB,
AAQueryInfo &AAQI) {
assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
"BasicAliasAnalysis doesn't support interprocedural queries.");
return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI);
}
/// Checks to see if the specified callsite can clobber the specified memory
/// object.
///
/// Since we only look at local properties of this function, we really can't
/// say much about this query. We do, however, use simple "address taken"
/// analysis on local objects.
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
const MemoryLocation &Loc,
AAQueryInfo &AAQI) {
assert(notDifferentParent(Call, Loc.Ptr) &&
"AliasAnalysis query involving multiple functions!");
const Value *Object = getUnderlyingObject(Loc.Ptr);
// Calls marked 'tail' cannot read or write allocas from the current frame
// because the current frame might be destroyed by the time they run. However,
// a tail call may use an alloca with byval. Calling with byval copies the
// contents of the alloca into argument registers or stack slots, so there is
// no lifetime issue.
if (isa<AllocaInst>(Object))
if (const CallInst *CI = dyn_cast<CallInst>(Call))
if (CI->isTailCall() &&
!CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
return ModRefInfo::NoModRef;
// Stack restore is able to modify unescaped dynamic allocas. Assume it may
// modify them even though the alloca is not escaped.
if (auto *AI = dyn_cast<AllocaInst>(Object))
if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
return ModRefInfo::Mod;
// If the pointer is to a locally allocated object that does not escape,
// then the call can not mod/ref the pointer unless the call takes the pointer
// as an argument, and itself doesn't capture it.
if (!isa<Constant>(Object) && Call != Object &&
isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
// Optimistically assume that call doesn't touch Object and check this
// assumption in the following loop.
ModRefInfo Result = ModRefInfo::NoModRef;
bool IsMustAlias = true;
unsigned OperandNo = 0;
for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
CI != CE; ++CI, ++OperandNo) {
// Only look at the no-capture or byval pointer arguments. If this
// pointer were passed to arguments that were neither of these, then it
// couldn't be no-capture.
if (!(*CI)->getType()->isPointerTy() ||
(!Call->doesNotCapture(OperandNo) &&
OperandNo < Call->getNumArgOperands() &&
!Call->isByValArgument(OperandNo)))
continue;
// Call doesn't access memory through this operand, so we don't care
// if it aliases with Object.
if (Call->doesNotAccessMemory(OperandNo))
continue;
// If this is a no-capture pointer argument, see if we can tell that it
// is impossible to alias the pointer we're checking.
AliasResult AR = getBestAAResults().alias(
MemoryLocation::getBeforeOrAfter(*CI),
MemoryLocation::getBeforeOrAfter(Object), AAQI);
if (AR != AliasResult::MustAlias)
IsMustAlias = false;
// Operand doesn't alias 'Object', continue looking for other aliases
if (AR == AliasResult::NoAlias)
continue;
// Operand aliases 'Object', but call doesn't modify it. Strengthen
// initial assumption and keep looking in case if there are more aliases.
if (Call->onlyReadsMemory(OperandNo)) {
Result = setRef(Result);
continue;
}
// Operand aliases 'Object' but call only writes into it.
if (Call->doesNotReadMemory(OperandNo)) {
Result = setMod(Result);
continue;
}
// This operand aliases 'Object' and call reads and writes into it.
// Setting ModRef will not yield an early return below, MustAlias is not
// used further.
Result = ModRefInfo::ModRef;
break;
}
// No operand aliases, reset Must bit. Add below if at least one aliases
// and all aliases found are MustAlias.
if (isNoModRef(Result))
IsMustAlias = false;
// Early return if we improved mod ref information
if (!isModAndRefSet(Result)) {
if (isNoModRef(Result))
return ModRefInfo::NoModRef;
return IsMustAlias ? setMust(Result) : clearMust(Result);
}
}
// If the call is malloc/calloc like, we can assume that it doesn't
// modify any IR visible value. This is only valid because we assume these
// routines do not read values visible in the IR. TODO: Consider special
// casing realloc and strdup routines which access only their arguments as
// well. Or alternatively, replace all of this with inaccessiblememonly once
// that's implemented fully.
if (isMallocOrCallocLikeFn(Call, &TLI)) {
// Be conservative if the accessed pointer may alias the allocation -
// fallback to the generic handling below.
if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc,
AAQI) == AliasResult::NoAlias)
return ModRefInfo::NoModRef;
}
// The semantics of memcpy intrinsics either exactly overlap or do not
// overlap, i.e., source and destination of any given memcpy are either
// no-alias or must-alias.
if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
AliasResult SrcAA =
getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
AliasResult DestAA =
getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
// It's also possible for Loc to alias both src and dest, or neither.
ModRefInfo rv = ModRefInfo::NoModRef;
if (SrcAA != AliasResult::NoAlias)
rv = setRef(rv);
if (DestAA != AliasResult::NoAlias)
rv = setMod(rv);
return rv;
}
// Guard intrinsics are marked as arbitrarily writing so that proper control
// dependencies are maintained but they never mods any particular memory
// location.
//
// *Unlike* assumes, guard intrinsics are modeled as reading memory since the
// heap state at the point the guard is issued needs to be consistent in case
// the guard invokes the "deopt" continuation.
if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
return ModRefInfo::Ref;
// The same applies to deoptimize which is essentially a guard(false).
if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
return ModRefInfo::Ref;
// Like assumes, invariant.start intrinsics were also marked as arbitrarily
// writing so that proper control dependencies are maintained but they never
// mod any particular memory location visible to the IR.
// *Unlike* assumes (which are now modeled as NoModRef), invariant.start
// intrinsic is now modeled as reading memory. This prevents hoisting the
// invariant.start intrinsic over stores. Consider:
// *ptr = 40;
// *ptr = 50;
// invariant_start(ptr)
// int val = *ptr;
// print(val);
//
// This cannot be transformed to:
//
// *ptr = 40;
// invariant_start(ptr)
// *ptr = 50;
// int val = *ptr;
// print(val);
//
// The transformation will cause the second store to be ignored (based on
// rules of invariant.start) and print 40, while the first program always
// prints 50.
if (isIntrinsicCall(Call, Intrinsic::invariant_start))
return ModRefInfo::Ref;
// The AAResultBase base class has some smarts, lets use them.
return AAResultBase::getModRefInfo(Call, Loc, AAQI);
}
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
const CallBase *Call2,
AAQueryInfo &AAQI) {
// Guard intrinsics are marked as arbitrarily writing so that proper control
// dependencies are maintained but they never mods any particular memory
// location.
//
// *Unlike* assumes, guard intrinsics are modeled as reading memory since the
// heap state at the point the guard is issued needs to be consistent in case
// the guard invokes the "deopt" continuation.
// NB! This function is *not* commutative, so we special case two
// possibilities for guard intrinsics.
if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
return isModSet(createModRefInfo(getModRefBehavior(Call2)))
? ModRefInfo::Ref
: ModRefInfo::NoModRef;
if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
return isModSet(createModRefInfo(getModRefBehavior(Call1)))
? ModRefInfo::Mod
: ModRefInfo::NoModRef;
// The AAResultBase base class has some smarts, lets use them.
return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
}
/// Return true if we know V to the base address of the corresponding memory
/// object. This implies that any address less than V must be out of bounds
/// for the underlying object. Note that just being isIdentifiedObject() is
/// not enough - For example, a negative offset from a noalias argument or call
/// can be inbounds w.r.t the actual underlying object.
static bool isBaseOfObject(const Value *V) {
// TODO: We can handle other cases here
// 1) For GC languages, arguments to functions are often required to be
// base pointers.
// 2) Result of allocation routines are often base pointers. Leverage TLI.
return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
}
/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer.
///
/// We know that V1 is a GEP, but we don't know anything about V2.
/// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
/// V2.
AliasResult BasicAAResult::aliasGEP(
const GEPOperator *GEP1, LocationSize V1Size,
const Value *V2, LocationSize V2Size,
const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
if (!V1Size.hasValue() && !V2Size.hasValue()) {
// TODO: This limitation exists for compile-time reasons. Relax it if we
// can avoid exponential pathological cases.
if (!isa<GEPOperator>(V2))
return AliasResult::MayAlias;
// If both accesses have unknown size, we can only check whether the base
// objects don't alias.
AliasResult BaseAlias = getBestAAResults().alias(
MemoryLocation::getBeforeOrAfter(UnderlyingV1),
MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
: AliasResult::MayAlias;
}
DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
// Don't attempt to analyze the decomposed GEP if index scale is not a
// compile-time constant.
if (!DecompGEP1.HasCompileTimeConstantScale ||
!DecompGEP2.HasCompileTimeConstantScale)
return AliasResult::MayAlias;
assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
"DecomposeGEPExpression returned a result different from "
"getUnderlyingObject");
// Subtract the GEP2 pointer from the GEP1 pointer to find out their
// symbolic difference.
DecompGEP1.Offset -= DecompGEP2.Offset;
GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
// If an inbounds GEP would have to start from an out of bounds address
// for the two to alias, then we can assume noalias.
if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
isBaseOfObject(DecompGEP2.Base))
return AliasResult::NoAlias;
if (isa<GEPOperator>(V2)) {
// Symmetric case to above.
if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
isBaseOfObject(DecompGEP1.Base))
return AliasResult::NoAlias;
}
// For GEPs with identical offsets, we can preserve the size and AAInfo
// when performing the alias check on the underlying objects.
if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
return getBestAAResults().alias(
MemoryLocation(UnderlyingV1, V1Size),
MemoryLocation(UnderlyingV2, V2Size), AAQI);
// Do the base pointers alias?
AliasResult BaseAlias = getBestAAResults().alias(
MemoryLocation::getBeforeOrAfter(UnderlyingV1),
MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
// If we get a No or May, then return it immediately, no amount of analysis
// will improve this situation.
if (BaseAlias != AliasResult::MustAlias) {
assert(BaseAlias == AliasResult::NoAlias ||
BaseAlias == AliasResult::MayAlias);
return BaseAlias;
}
// If there is a constant difference between the pointers, but the difference
// is less than the size of the associated memory object, then we know
// that the objects are partially overlapping. If the difference is
// greater, we know they do not overlap.
if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
APInt &Off = DecompGEP1.Offset;
// Initialize for Off >= 0 (V2 <= GEP1) case.
const Value *LeftPtr = V2;
const Value *RightPtr = GEP1;
LocationSize VLeftSize = V2Size;
LocationSize VRightSize = V1Size;
const bool Swapped = Off.isNegative();
if (Swapped) {
// Swap if we have the situation where:
// + +
// | BaseOffset |
// ---------------->|
// |-->V1Size |-------> V2Size
// GEP1 V2
std::swap(LeftPtr, RightPtr);
std::swap(VLeftSize, VRightSize);
Off = -Off;
}
if (VLeftSize.hasValue()) {
const uint64_t LSize = VLeftSize.getValue();
if (Off.ult(LSize)) {
// Conservatively drop processing if a phi was visited and/or offset is
// too big.
AliasResult AR = AliasResult::PartialAlias;
if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
(Off + VRightSize.getValue()).ule(LSize)) {
// Memory referenced by right pointer is nested. Save the offset in
// cache. Note that originally offset estimated as GEP1-V2, but
// AliasResult contains the shift that represents GEP1+Offset=V2.
AR.setOffset(-Off.getSExtValue());
AR.swap(Swapped);
}
return AR;
}
return AliasResult::NoAlias;
}
}
if (!DecompGEP1.VarIndices.empty()) {
APInt GCD;
bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
APInt Scale = DecompGEP1.VarIndices[i].Scale;
APInt ScaleForGCD = DecompGEP1.VarIndices[i].Scale;
if (!DecompGEP1.VarIndices[i].IsNSW)
ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(),
Scale.countTrailingZeros());
if (i == 0)
GCD = ScaleForGCD.abs();
else
GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
if (AllNonNegative || AllNonPositive) {
// If the Value could change between cycles, then any reasoning about
// the Value this cycle may not hold in the next cycle. We'll just
// give up if we can't determine conditions that hold for every cycle:
const Value *V = DecompGEP1.VarIndices[i].V;
const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI;
KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT);
bool SignKnownZero = Known.isNonNegative();
bool SignKnownOne = Known.isNegative();
// Zero-extension widens the variable, and so forces the sign
// bit to zero.
bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
SignKnownZero |= IsZExt;
SignKnownOne &= !IsZExt;
AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
(SignKnownOne && Scale.isNonPositive());
AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
(SignKnownOne && Scale.isNonNegative());
}
}
// We now have accesses at two offsets from the same base:
// 1. (...)*GCD + DecompGEP1.Offset with size V1Size
// 2. 0 with size V2Size
// Using arithmetic modulo GCD, the accesses are at
// [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
// into the range [V2Size..GCD), then we know they cannot overlap.
APInt ModOffset = DecompGEP1.Offset.srem(GCD);
if (ModOffset.isNegative())
ModOffset += GCD; // We want mod, not rem.
if (V1Size.hasValue() && V2Size.hasValue() &&
ModOffset.uge(V2Size.getValue()) &&
(GCD - ModOffset).uge(V1Size.getValue()))
return AliasResult::NoAlias;
// If we know all the variables are non-negative, then the total offset is
// also non-negative and >= DecompGEP1.Offset. We have the following layout:
// [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
// If DecompGEP1.Offset >= V2Size, the accesses don't alias.
if (AllNonNegative && V2Size.hasValue() &&
DecompGEP1.Offset.uge(V2Size.getValue()))
return AliasResult::NoAlias;
// Similarly, if the variables are non-positive, then the total offset is
// also non-positive and <= DecompGEP1.Offset. We have the following layout:
// [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
// If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
if (AllNonPositive && V1Size.hasValue() &&
(-DecompGEP1.Offset).uge(V1Size.getValue()))
return AliasResult::NoAlias;
if (V1Size.hasValue() && V2Size.hasValue()) {
// Try to determine whether abs(VarIndex) > 0.
Optional<APInt> MinAbsVarIndex;
if (DecompGEP1.VarIndices.size() == 1) {
// VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT))
MinAbsVarIndex = Var.Scale.abs();
} else if (DecompGEP1.VarIndices.size() == 2) {
// VarIndex = Scale*V0 + (-Scale)*V1.
// If V0 != V1 then abs(VarIndex) >= abs(Scale).
// Check that VisitedPhiBBs is empty, to avoid reasoning about
// inequality of values across loop iterations.
const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits &&
Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() &&
isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT))
MinAbsVarIndex = Var0.Scale.abs();
}
if (MinAbsVarIndex) {
// The constant offset will have added at least +/-MinAbsVarIndex to it.
APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
// Check that an access at OffsetLo or lower, and an access at OffsetHi
// or higher both do not alias.
if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
return AliasResult::NoAlias;
}
}
if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
DecompGEP1.Offset, &AC, DT))
return AliasResult::NoAlias;
}
// Statically, we can see that the base objects are the same, but the
// pointers have dynamic offsets which we can't resolve. And none of our
// little tricks above worked.
return AliasResult::MayAlias;
}
static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
// If the results agree, take it.
if (A == B)
return A;
// A mix of PartialAlias and MustAlias is PartialAlias.
if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
(B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
return AliasResult::PartialAlias;
// Otherwise, we don't know anything.
return AliasResult::MayAlias;
}
/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
/// against another.
AliasResult
BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI) {
// If the values are Selects with the same condition, we can do a more precise
// check: just check for aliases between the values on corresponding arms.
if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
if (SI->getCondition() == SI2->getCondition()) {
AliasResult Alias = getBestAAResults().alias(
MemoryLocation(SI->getTrueValue(), SISize),
MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
if (Alias == AliasResult::MayAlias)
return AliasResult::MayAlias;
AliasResult ThisAlias = getBestAAResults().alias(
MemoryLocation(SI->getFalseValue(), SISize),
MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
return MergeAliasResults(ThisAlias, Alias);
}
// If both arms of the Select node NoAlias or MustAlias V2, then returns
// NoAlias / MustAlias. Otherwise, returns MayAlias.
AliasResult Alias = getBestAAResults().alias(
MemoryLocation(V2, V2Size),
MemoryLocation(SI->getTrueValue(), SISize), AAQI);
if (Alias == AliasResult::MayAlias)
return AliasResult::MayAlias;
AliasResult ThisAlias = getBestAAResults().alias(
MemoryLocation(V2, V2Size),
MemoryLocation(SI->getFalseValue(), SISize), AAQI);
return MergeAliasResults(ThisAlias, Alias);
}
/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
/// another.
AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI) {
if (!PN->getNumIncomingValues())
return AliasResult::NoAlias;
// If the values are PHIs in the same block, we can do a more precise
// as well as efficient check: just check for aliases between the values
// on corresponding edges.
if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
if (PN2->getParent() == PN->getParent()) {
Optional<AliasResult> Alias;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
AliasResult ThisAlias = getBestAAResults().alias(
MemoryLocation(PN->getIncomingValue(i), PNSize),
MemoryLocation(
PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
AAQI);
if (Alias)
*Alias = MergeAliasResults(*Alias, ThisAlias);
else
Alias = ThisAlias;
if (*Alias == AliasResult::MayAlias)
break;
}
return *Alias;
}
SmallVector<Value *, 4> V1Srcs;
// If a phi operand recurses back to the phi, we can still determine NoAlias
// if we don't alias the underlying objects of the other phi operands, as we
// know that the recursive phi needs to be based on them in some way.
bool isRecursive = false;
auto CheckForRecPhi = [&](Value *PV) {
if (!EnableRecPhiAnalysis)
return false;
if (getUnderlyingObject(PV) == PN) {
isRecursive = true;
return true;
}
return false;
};
if (PV) {
// If we have PhiValues then use it to get the underlying phi values.
const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
// If we have more phi values than the search depth then return MayAlias
// conservatively to avoid compile time explosion. The worst possible case
// is if both sides are PHI nodes. In which case, this is O(m x n) time
// where 'm' and 'n' are the number of PHI sources.
if (PhiValueSet.size() > MaxLookupSearchDepth)
return AliasResult::MayAlias;
// Add the values to V1Srcs
for (Value *PV1 : PhiValueSet) {
if (CheckForRecPhi(PV1))
continue;
V1Srcs.push_back(PV1);
}
} else {
// If we don't have PhiInfo then just look at the operands of the phi itself
// FIXME: Remove this once we can guarantee that we have PhiInfo always
SmallPtrSet<Value *, 4> UniqueSrc;
Value *OnePhi = nullptr;
for (Value *PV1 : PN->incoming_values()) {
if (isa<PHINode>(PV1)) {
if (OnePhi && OnePhi != PV1) {
// To control potential compile time explosion, we choose to be
// conserviate when we have more than one Phi input. It is important
// that we handle the single phi case as that lets us handle LCSSA
// phi nodes and (combined with the recursive phi handling) simple
// pointer induction variable patterns.
return AliasResult::MayAlias;
}
OnePhi = PV1;
}
if (CheckForRecPhi(PV1))
continue;
if (UniqueSrc.insert(PV1).second)
V1Srcs.push_back(PV1);
}
if (OnePhi && UniqueSrc.size() > 1)
// Out of an abundance of caution, allow only the trivial lcssa and
// recursive phi cases.
return AliasResult::MayAlias;
}
// If V1Srcs is empty then that means that the phi has no underlying non-phi
// value. This should only be possible in blocks unreachable from the entry
// block, but return MayAlias just in case.
if (V1Srcs.empty())
return AliasResult::MayAlias;
// If this PHI node is recursive, indicate that the pointer may be moved
// across iterations. We can only prove NoAlias if different underlying
// objects are involved.
if (isRecursive)
PNSize = LocationSize::beforeOrAfterPointer();
// In the recursive alias queries below, we may compare values from two
// different loop iterations. Keep track of visited phi blocks, which will
// be used when determining value equivalence.
bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
auto _ = make_scope_exit([&]() {
if (BlockInserted)
VisitedPhiBBs.erase(PN->getParent());
});
// If we inserted a block into VisitedPhiBBs, alias analysis results that
// have been cached earlier may no longer be valid. Perform recursive queries
// with a new AAQueryInfo.
AAQueryInfo NewAAQI = AAQI.withEmptyCache();
AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
AliasResult Alias = getBestAAResults().alias(
MemoryLocation(V2, V2Size),
MemoryLocation(V1Srcs[0], PNSize), *UseAAQI);
// Early exit if the check of the first PHI source against V2 is MayAlias.
// Other results are not possible.
if (Alias == AliasResult::MayAlias)
return AliasResult::MayAlias;
// With recursive phis we cannot guarantee that MustAlias/PartialAlias will
// remain valid to all elements and needs to conservatively return MayAlias.
if (isRecursive && Alias != AliasResult::NoAlias)
return AliasResult::MayAlias;
// If all sources of the PHI node NoAlias or MustAlias V2, then returns
// NoAlias / MustAlias. Otherwise, returns MayAlias.
for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
Value *V = V1Srcs[i];
AliasResult ThisAlias = getBestAAResults().alias(
MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI);
Alias = MergeAliasResults(ThisAlias, Alias);
if (Alias == AliasResult::MayAlias)
break;
}
return Alias;
}
/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
/// array references.
AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI) {
// If either of the memory references is empty, it doesn't matter what the
// pointer values are.
if (V1Size.isZero() || V2Size.isZero())
return AliasResult::NoAlias;
// Strip off any casts if they exist.
V1 = V1->stripPointerCastsForAliasAnalysis();
V2 = V2->stripPointerCastsForAliasAnalysis();
// If V1 or V2 is undef, the result is NoAlias because we can always pick a
// value for undef that aliases nothing in the program.
if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
return AliasResult::NoAlias;
// Are we checking for alias of the same value?
// Because we look 'through' phi nodes, we could look at "Value" pointers from
// different iterations. We must therefore make sure that this is not the
// case. The function isValueEqualInPotentialCycles ensures that this cannot
// happen by looking at the visited phi nodes and making sure they cannot
// reach the value.
if (isValueEqualInPotentialCycles(V1, V2))
return AliasResult::MustAlias;
if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
return AliasResult::NoAlias; // Scalars cannot alias each other
// Figure out what objects these things are pointing to if we can.
const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
// Null values in the default address space don't point to any object, so they
// don't alias any other pointer.
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
return AliasResult::NoAlias;
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
return AliasResult::NoAlias;
if (O1 != O2) {
// If V1/V2 point to two different objects, we know that we have no alias.
if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
return AliasResult::NoAlias;
// Constant pointers can't alias with non-const isIdentifiedObject objects.
if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
(isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
return AliasResult::NoAlias;
// Function arguments can't alias with things that are known to be
// unambigously identified at the function level.
if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
(isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
return AliasResult::NoAlias;
// If one pointer is the result of a call/invoke or load and the other is a
// non-escaping local object within the same function, then we know the
// object couldn't escape to a point where the call could return it.
//
// Note that if the pointers are in different functions, there are a
// variety of complications. A call with a nocapture argument may still
// temporary store the nocapture argument's value in a temporary memory
// location if that memory location doesn't escape. Or it may pass a
// nocapture value to other functions as long as they don't capture it.
if (isEscapeSource(O1) &&
isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
return AliasResult::NoAlias;
if (isEscapeSource(O2) &&
isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
return AliasResult::NoAlias;
}
// If the size of one access is larger than the entire object on the other
// side, then we know such behavior is undefined and can assume no alias.
bool NullIsValidLocation = NullPointerIsDefined(&F);
if ((isObjectSmallerThan(
O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
TLI, NullIsValidLocation)) ||
(isObjectSmallerThan(
O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
TLI, NullIsValidLocation)))
return AliasResult::NoAlias;
// If one the accesses may be before the accessed pointer, canonicalize this
// by using unknown after-pointer sizes for both accesses. This is
// equivalent, because regardless of which pointer is lower, one of them
// will always came after the other, as long as the underlying objects aren't
// disjoint. We do this so that the rest of BasicAA does not have to deal
// with accesses before the base pointer, and to improve cache utilization by
// merging equivalent states.
if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
V1Size = LocationSize::afterPointer();
V2Size = LocationSize::afterPointer();
}
// FIXME: If this depth limit is hit, then we may cache sub-optimal results
// for recursive queries. For this reason, this limit is chosen to be large
// enough to be very rarely hit, while still being small enough to avoid
// stack overflows.
if (AAQI.Depth >= 512)
return AliasResult::MayAlias;
// Check the cache before climbing up use-def chains. This also terminates
// otherwise infinitely recursive queries.
AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size});
const bool Swapped = V1 > V2;
if (Swapped)
std::swap(Locs.first, Locs.second);
const auto &Pair = AAQI.AliasCache.try_emplace(
Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
if (!Pair.second) {
auto &Entry = Pair.first->second;
if (!Entry.isDefinitive()) {
// Remember that we used an assumption.
++Entry.NumAssumptionUses;
++AAQI.NumAssumptionUses;
}
// Cache contains sorted {V1,V2} pairs but we should return original order.
auto Result = Entry.Result;
Result.swap(Swapped);
return Result;
}
int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
AliasResult Result =
aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
auto It = AAQI.AliasCache.find(Locs);
assert(It != AAQI.AliasCache.end() && "Must be in cache");
auto &Entry = It->second;
// Check whether a NoAlias assumption has been used, but disproven.
bool AssumptionDisproven =
Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
if (AssumptionDisproven)
Result = AliasResult::MayAlias;
// This is a definitive result now, when considered as a root query.
AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
Entry.Result = Result;
// Cache contains sorted {V1,V2} pairs.
Entry.Result.swap(Swapped);
Entry.NumAssumptionUses = -1;
// If the assumption has been disproven, remove any results that may have
// been based on this assumption. Do this after the Entry updates above to
// avoid iterator invalidation.
if (AssumptionDisproven)
while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
// The result may still be based on assumptions higher up in the chain.
// Remember it, so it can be purged from the cache later.
if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
Result != AliasResult::MayAlias)
AAQI.AssumptionBasedResults.push_back(Locs);
return Result;
}
AliasResult BasicAAResult::aliasCheckRecursive(
const Value *V1, LocationSize V1Size,
const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
if (Result != AliasResult::MayAlias)
return Result;
} else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
if (Result != AliasResult::MayAlias)
return Result;
}
if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
if (Result != AliasResult::MayAlias)
return Result;
} else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
if (Result != AliasResult::MayAlias)
return Result;
}
if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
if (Result != AliasResult::MayAlias)
return Result;
} else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
if (Result != AliasResult::MayAlias)
return Result;
}
// If both pointers are pointing into the same object and one of them
// accesses the entire object, then the accesses must overlap in some way.
if (O1 == O2) {
bool NullIsValidLocation = NullPointerIsDefined(&F);
if (V1Size.isPrecise() && V2Size.isPrecise() &&
(isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
return AliasResult::PartialAlias;
}
return AliasResult::MayAlias;
}
/// Check whether two Values can be considered equivalent.
///
/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
/// they can not be part of a cycle in the value graph by looking at all
/// visited phi nodes an making sure that the phis cannot reach the value. We
/// have to do this because we are looking through phi nodes (That is we say
/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
const Value *V2) {
if (V != V2)
return false;
const Instruction *Inst = dyn_cast<Instruction>(V);
if (!Inst)
return true;
if (VisitedPhiBBs.empty())
return true;
if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
return false;
// Make sure that the visited phis cannot reach the Value. This ensures that
// the Values cannot come from different iterations of a potential cycle the
// phi nodes could be involved in.
for (auto *P : VisitedPhiBBs)
if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
return false;
return true;
}
/// Computes the symbolic difference between two de-composed GEPs.
///
/// Dest and Src are the variable indices from two decomposed GetElementPtr
/// instructions GEP1 and GEP2 which have common base pointers.
void BasicAAResult::GetIndexDifference(
SmallVectorImpl<VariableGEPIndex> &Dest,
const SmallVectorImpl<VariableGEPIndex> &Src) {
if (Src.empty())
return;
for (unsigned i = 0, e = Src.size(); i != e; ++i) {
const Value *V = Src[i].V;
unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
APInt Scale = Src[i].Scale;
// Find V in Dest. This is N^2, but pointer indices almost never have more
// than a few variable indexes.
for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
continue;
// If we found it, subtract off Scale V's from the entry in Dest. If it
// goes to zero, remove the entry.
if (Dest[j].Scale != Scale) {
Dest[j].Scale -= Scale;
Dest[j].IsNSW = false;
} else
Dest.erase(Dest.begin() + j);
Scale = 0;
break;
}
// If we didn't consume this entry, add it to the end of the Dest list.
if (!!Scale) {
VariableGEPIndex Entry = {V, ZExtBits, SExtBits,
-Scale, Src[i].CxtI, Src[i].IsNSW};
Dest.push_back(Entry);
}
}
}
bool BasicAAResult::constantOffsetHeuristic(
const SmallVectorImpl<VariableGEPIndex> &VarIndices,
LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
AssumptionCache *AC, DominatorTree *DT) {
if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
!MaybeV2Size.hasValue())
return false;
const uint64_t V1Size = MaybeV1Size.getValue();
const uint64_t V2Size = MaybeV2Size.getValue();
const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
Var0.Scale != -Var1.Scale || Var0.V->getType() != Var1.V->getType())
return false;
// We'll strip off the Extensions of Var0 and Var1 and do another round
// of GetLinearExpression decomposition. In the example above, if Var0
// is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
LinearExpression E0 =
GetLinearExpression(ExtendedValue(Var0.V), DL, 0, AC, DT);
LinearExpression E1 =
GetLinearExpression(ExtendedValue(Var1.V), DL, 0, AC, DT);
if (E0.Scale != E1.Scale || E0.Val.ZExtBits != E1.Val.ZExtBits ||
E0.Val.SExtBits != E1.Val.SExtBits ||
!isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V))
return false;
// We have a hit - Var0 and Var1 only differ by a constant offset!
// If we've been sext'ed then zext'd the maximum difference between Var0 and
// Var1 is possible to calculate, but we're just interested in the absolute
// minimum difference between the two. The minimum distance may occur due to
// wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
// the minimum distance between %i and %i + 5 is 3.
APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
MinDiff = APIntOps::umin(MinDiff, Wrapped);
APInt MinDiffBytes =
MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
// We can't definitely say whether GEP1 is before or after V2 due to wrapping
// arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
// values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
// V2Size can fit in the MinDiffBytes gap.
return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
MinDiffBytes.uge(V2Size + BaseOffset.abs());
}
//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//
AnalysisKey BasicAA::Key;
BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
}
BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
char BasicAAWrapperPass::ID = 0;
void BasicAAWrapperPass::anchor() {}
INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
"Basic Alias Analysis (stateless AA impl)", true, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
"Basic Alias Analysis (stateless AA impl)", true, true)
FunctionPass *llvm::createBasicAAWrapperPass() {
return new BasicAAWrapperPass();
}
bool BasicAAWrapperPass::runOnFunction(Function &F) {
auto &ACT = getAnalysis<AssumptionCacheTracker>();
auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
TLIWP.getTLI(F), ACT.getAssumptionCache(F),
&DTWP.getDomTree(),
PVWP ? &PVWP->getResult() : nullptr));
return false;
}
void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AssumptionCacheTracker>();
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
AU.addUsedIfAvailable<PhiValuesWrapperPass>();
}
BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
return BasicAAResult(
F.getParent()->getDataLayout(), F,
P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
}
|