1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface between the inliner and a learned model.
// It delegates model evaluation to either the AOT compiled model (the
// 'release' mode) or a runtime-loaded model (the 'development' case).
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API)
#include <limits>
#include <unordered_map>
#include <unordered_set>
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/MLInlineAdvisor.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Path.h"
using namespace llvm;
#define DEBUG_TYPE "inline-ml"
static cl::opt<float> SizeIncreaseThreshold(
"ml-advisor-size-increase-threshold", cl::Hidden,
cl::desc("Maximum factor by which expected native size may increase before "
"blocking any further inlining."),
cl::init(2.0));
// clang-format off
const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{
// InlineCost features - these must come first
#define POPULATE_NAMES(INDEX_NAME, NAME) NAME,
INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES)
#undef POPULATE_NAMES
// Non-cost features
#define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME,
INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
#undef POPULATE_NAMES
};
// clang-format on
const char *const llvm::DecisionName = "inlining_decision";
const char *const llvm::DefaultDecisionName = "inlining_default";
const char *const llvm::RewardName = "delta_size";
CallBase *getInlinableCS(Instruction &I) {
if (auto *CS = dyn_cast<CallBase>(&I))
if (Function *Callee = CS->getCalledFunction()) {
if (!Callee->isDeclaration()) {
return CS;
}
}
return nullptr;
}
MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> Runner)
: InlineAdvisor(
M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
ModelRunner(std::move(Runner)), CG(new CallGraph(M)),
InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
assert(ModelRunner);
// Extract the 'call site height' feature - the position of a call site
// relative to the farthest statically reachable SCC node. We don't mutate
// this value while inlining happens. Empirically, this feature proved
// critical in behavioral cloning - i.e. training a model to mimic the manual
// heuristic's decisions - and, thus, equally important for training for
// improvement.
for (auto I = scc_begin(CG.get()); !I.isAtEnd(); ++I) {
const std::vector<CallGraphNode *> &CGNodes = *I;
unsigned Level = 0;
for (auto *CGNode : CGNodes) {
Function *F = CGNode->getFunction();
if (!F || F->isDeclaration())
continue;
for (auto &I : instructions(F)) {
if (auto *CS = getInlinableCS(I)) {
auto *Called = CS->getCalledFunction();
auto Pos = FunctionLevels.find(Called);
// In bottom up traversal, an inlinable callee is either in the
// same SCC, or to a function in a visited SCC. So not finding its
// level means we haven't visited it yet, meaning it's in this SCC.
if (Pos == FunctionLevels.end())
continue;
Level = std::max(Level, Pos->second + 1);
}
}
}
for (auto *CGNode : CGNodes) {
Function *F = CGNode->getFunction();
if (F && !F->isDeclaration())
FunctionLevels[F] = Level;
}
}
}
void MLInlineAdvisor::onPassEntry() {
// Function passes executed between InlinerPass runs may have changed the
// module-wide features.
NodeCount = 0;
EdgeCount = 0;
for (auto &F : M)
if (!F.isDeclaration()) {
++NodeCount;
EdgeCount += getLocalCalls(F);
}
}
int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
return FAM.getResult<FunctionPropertiesAnalysis>(F)
.DirectCallsToDefinedFunctions;
}
// Update the internal state of the advisor, and force invalidate feature
// analysis. Currently, we maintain minimal (and very simple) global state - the
// number of functions and the number of static calls. We also keep track of the
// total IR size in this module, to stop misbehaving policies at a certain bloat
// factor (SizeIncreaseThreshold)
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
bool CalleeWasDeleted) {
assert(!ForceStop);
Function *Caller = Advice.getCaller();
Function *Callee = Advice.getCallee();
// The caller features aren't valid anymore.
{
PreservedAnalyses PA = PreservedAnalyses::all();
PA.abandon<FunctionPropertiesAnalysis>();
FAM.invalidate(*Caller, PA);
}
int64_t IRSizeAfter =
getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
ForceStop = true;
// We can delta-update module-wide features. We know the inlining only changed
// the caller, and maybe the callee (by deleting the latter).
// Nodes are simple to update.
// For edges, we 'forget' the edges that the caller and callee used to have
// before inlining, and add back what they currently have together.
int64_t NewCallerAndCalleeEdges =
FAM.getResult<FunctionPropertiesAnalysis>(*Caller)
.DirectCallsToDefinedFunctions;
if (CalleeWasDeleted)
--NodeCount;
else
NewCallerAndCalleeEdges +=
FAM.getResult<FunctionPropertiesAnalysis>(*Callee)
.DirectCallsToDefinedFunctions;
EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
}
int64_t MLInlineAdvisor::getModuleIRSize() const {
int64_t Ret = 0;
for (auto &F : CG->getModule())
if (!F.isDeclaration())
Ret += getIRSize(F);
return Ret;
}
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) {
auto &Caller = *CB.getCaller();
auto &Callee = *CB.getCalledFunction();
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
return FAM.getResult<AssumptionAnalysis>(F);
};
auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE);
// If this is a "never inline" case, there won't be any changes to internal
// state we need to track, so we can just return the base InlineAdvice, which
// will do nothing interesting.
// Same thing if this is a recursive case.
if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never ||
&Caller == &Callee)
return getMandatoryAdvice(CB, false);
bool Mandatory =
MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always;
// If we need to stop, we won't want to track anymore any state changes, so
// we just return the base InlineAdvice, which acts as a noop.
if (ForceStop) {
ORE.emit([&] {
return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
<< "Won't attempt inlining because module size grew too much.";
});
return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
}
int CostEstimate = 0;
if (!Mandatory) {
auto IsCallSiteInlinable =
llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
if (!IsCallSiteInlinable) {
// We can't inline this for correctness reasons, so return the base
// InlineAdvice, as we don't care about tracking any state changes (which
// won't happen).
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
}
CostEstimate = *IsCallSiteInlinable;
}
const auto CostFeatures =
llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache);
if (!CostFeatures) {
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
}
if (Mandatory)
return getMandatoryAdvice(CB, true);
auto NrCtantParams = 0;
for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
NrCtantParams += (isa<Constant>(*I));
}
auto &CallerBefore = FAM.getResult<FunctionPropertiesAnalysis>(Caller);
auto &CalleeBefore = FAM.getResult<FunctionPropertiesAnalysis>(Callee);
ModelRunner->setFeature(FeatureIndex::CalleeBasicBlockCount,
CalleeBefore.BasicBlockCount);
ModelRunner->setFeature(FeatureIndex::CallSiteHeight,
FunctionLevels[&Caller]);
ModelRunner->setFeature(FeatureIndex::NodeCount, NodeCount);
ModelRunner->setFeature(FeatureIndex::NrCtantParams, NrCtantParams);
ModelRunner->setFeature(FeatureIndex::EdgeCount, EdgeCount);
ModelRunner->setFeature(FeatureIndex::CallerUsers, CallerBefore.Uses);
ModelRunner->setFeature(FeatureIndex::CallerConditionallyExecutedBlocks,
CallerBefore.BlocksReachedFromConditionalInstruction);
ModelRunner->setFeature(FeatureIndex::CallerBasicBlockCount,
CallerBefore.BasicBlockCount);
ModelRunner->setFeature(FeatureIndex::CalleeConditionallyExecutedBlocks,
CalleeBefore.BlocksReachedFromConditionalInstruction);
ModelRunner->setFeature(FeatureIndex::CalleeUsers, CalleeBefore.Uses);
ModelRunner->setFeature(FeatureIndex::CostEstimate, CostEstimate);
// Add the cost features
for (size_t I = 0;
I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) {
ModelRunner->setFeature(
inlineCostFeatureToMlFeature(static_cast<InlineCostFeatureIndex>(I)),
CostFeatures->at(I));
}
return getAdviceFromModel(CB, ORE);
}
std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
OptimizationRemarkEmitter &ORE) {
return std::make_unique<MLInlineAdvice>(this, CB, ORE, ModelRunner->run());
}
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
bool Advice) {
// Make sure we track inlinings in all cases - mandatory or not.
if (Advice && !ForceStop)
return getMandatoryAdviceImpl(CB);
// If this is a "never inline" case, there won't be any changes to internal
// state we need to track, so we can just return the base InlineAdvice, which
// will do nothing interesting.
// Same if we are forced to stop - we don't track anymore.
return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice);
}
std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true);
}
void MLInlineAdvice::reportContextForRemark(
DiagnosticInfoOptimizationBase &OR) {
using namespace ore;
OR << NV("Callee", Callee->getName());
for (size_t I = 0; I < NumberOfFeatures; ++I)
OR << NV(FeatureNameMap[I], getAdvisor()->getModelRunner().getFeature(I));
OR << NV("ShouldInline", isInliningRecommended());
}
void MLInlineAdvice::recordInliningImpl() {
ORE.emit([&]() {
OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
reportContextForRemark(R);
return R;
});
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
}
void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
ORE.emit([&]() {
OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
Block);
reportContextForRemark(R);
return R;
});
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
}
void MLInlineAdvice::recordUnsuccessfulInliningImpl(
const InlineResult &Result) {
ORE.emit([&]() {
OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
DLoc, Block);
reportContextForRemark(R);
return R;
});
}
void MLInlineAdvice::recordUnattemptedInliningImpl() {
ORE.emit([&]() {
OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
reportContextForRemark(R);
return R;
});
}
#endif // defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API)
|