1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
|
//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeBasedAliasAnalysis pass, which implements
// metadata-based TBAA.
//
// In LLVM IR, memory does not have types, so LLVM's own type system is not
// suitable for doing TBAA. Instead, metadata is added to the IR to describe
// a type system of a higher level language. This can be used to implement
// typical C/C++ TBAA, but it can also be used to implement custom alias
// analysis behavior for other languages.
//
// We now support two types of metadata format: scalar TBAA and struct-path
// aware TBAA. After all testing cases are upgraded to use struct-path aware
// TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
// can be dropped.
//
// The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
// three fields, e.g.:
// !0 = !{ !"an example type tree" }
// !1 = !{ !"int", !0 }
// !2 = !{ !"float", !0 }
// !3 = !{ !"const float", !2, i64 1 }
//
// The first field is an identity field. It can be any value, usually
// an MDString, which uniquely identifies the type. The most important
// name in the tree is the name of the root node. Two trees with
// different root node names are entirely disjoint, even if they
// have leaves with common names.
//
// The second field identifies the type's parent node in the tree, or
// is null or omitted for a root node. A type is considered to alias
// all of its descendants and all of its ancestors in the tree. Also,
// a type is considered to alias all types in other trees, so that
// bitcode produced from multiple front-ends is handled conservatively.
//
// If the third field is present, it's an integer which if equal to 1
// indicates that the type is "constant" (meaning pointsToConstantMemory
// should return true; see
// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
//
// With struct-path aware TBAA, the MDNodes attached to an instruction using
// "!tbaa" are called path tag nodes.
//
// The path tag node has 4 fields with the last field being optional.
//
// The first field is the base type node, it can be a struct type node
// or a scalar type node. The second field is the access type node, it
// must be a scalar type node. The third field is the offset into the base type.
// The last field has the same meaning as the last field of our scalar TBAA:
// it's an integer which if equal to 1 indicates that the access is "constant".
//
// The struct type node has a name and a list of pairs, one pair for each member
// of the struct. The first element of each pair is a type node (a struct type
// node or a scalar type node), specifying the type of the member, the second
// element of each pair is the offset of the member.
//
// Given an example
// typedef struct {
// short s;
// } A;
// typedef struct {
// uint16_t s;
// A a;
// } B;
//
// For an access to B.a.s, we attach !5 (a path tag node) to the load/store
// instruction. The base type is !4 (struct B), the access type is !2 (scalar
// type short) and the offset is 4.
//
// !0 = !{!"Simple C/C++ TBAA"}
// !1 = !{!"omnipotent char", !0} // Scalar type node
// !2 = !{!"short", !1} // Scalar type node
// !3 = !{!"A", !2, i64 0} // Struct type node
// !4 = !{!"B", !2, i64 0, !3, i64 4}
// // Struct type node
// !5 = !{!4, !2, i64 4} // Path tag node
//
// The struct type nodes and the scalar type nodes form a type DAG.
// Root (!0)
// char (!1) -- edge to Root
// short (!2) -- edge to char
// A (!3) -- edge with offset 0 to short
// B (!4) -- edge with offset 0 to short and edge with offset 4 to A
//
// To check if two tags (tagX and tagY) can alias, we start from the base type
// of tagX, follow the edge with the correct offset in the type DAG and adjust
// the offset until we reach the base type of tagY or until we reach the Root
// node.
// If we reach the base type of tagY, compare the adjusted offset with
// offset of tagY, return Alias if the offsets are the same, return NoAlias
// otherwise.
// If we reach the Root node, perform the above starting from base type of tagY
// to see if we reach base type of tagX.
//
// If they have different roots, they're part of different potentially
// unrelated type systems, so we return Alias to be conservative.
// If neither node is an ancestor of the other and they have the same root,
// then we say NoAlias.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
// A handy option for disabling TBAA functionality. The same effect can also be
// achieved by stripping the !tbaa tags from IR, but this option is sometimes
// more convenient.
static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
namespace {
/// isNewFormatTypeNode - Return true iff the given type node is in the new
/// size-aware format.
static bool isNewFormatTypeNode(const MDNode *N) {
if (N->getNumOperands() < 3)
return false;
// In the old format the first operand is a string.
if (!isa<MDNode>(N->getOperand(0)))
return false;
return true;
}
/// This is a simple wrapper around an MDNode which provides a higher-level
/// interface by hiding the details of how alias analysis information is encoded
/// in its operands.
template<typename MDNodeTy>
class TBAANodeImpl {
MDNodeTy *Node = nullptr;
public:
TBAANodeImpl() = default;
explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
/// getNode - Get the MDNode for this TBAANode.
MDNodeTy *getNode() const { return Node; }
/// isNewFormat - Return true iff the wrapped type node is in the new
/// size-aware format.
bool isNewFormat() const { return isNewFormatTypeNode(Node); }
/// getParent - Get this TBAANode's Alias tree parent.
TBAANodeImpl<MDNodeTy> getParent() const {
if (isNewFormat())
return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
if (Node->getNumOperands() < 2)
return TBAANodeImpl<MDNodeTy>();
MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
if (!P)
return TBAANodeImpl<MDNodeTy>();
// Ok, this node has a valid parent. Return it.
return TBAANodeImpl<MDNodeTy>(P);
}
/// Test if this TBAANode represents a type for objects which are
/// not modified (by any means) in the context where this
/// AliasAnalysis is relevant.
bool isTypeImmutable() const {
if (Node->getNumOperands() < 3)
return false;
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
if (!CI)
return false;
return CI->getValue()[0];
}
};
/// \name Specializations of \c TBAANodeImpl for const and non const qualified
/// \c MDNode.
/// @{
using TBAANode = TBAANodeImpl<const MDNode>;
using MutableTBAANode = TBAANodeImpl<MDNode>;
/// @}
/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
template<typename MDNodeTy>
class TBAAStructTagNodeImpl {
/// This node should be created with createTBAAAccessTag().
MDNodeTy *Node;
public:
explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTagNode.
MDNodeTy *getNode() const { return Node; }
/// isNewFormat - Return true iff the wrapped access tag is in the new
/// size-aware format.
bool isNewFormat() const {
if (Node->getNumOperands() < 4)
return false;
if (MDNodeTy *AccessType = getAccessType())
if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
return false;
return true;
}
MDNodeTy *getBaseType() const {
return dyn_cast_or_null<MDNode>(Node->getOperand(0));
}
MDNodeTy *getAccessType() const {
return dyn_cast_or_null<MDNode>(Node->getOperand(1));
}
uint64_t getOffset() const {
return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
}
uint64_t getSize() const {
if (!isNewFormat())
return UINT64_MAX;
return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
}
/// Test if this TBAAStructTagNode represents a type for objects
/// which are not modified (by any means) in the context where this
/// AliasAnalysis is relevant.
bool isTypeImmutable() const {
unsigned OpNo = isNewFormat() ? 4 : 3;
if (Node->getNumOperands() < OpNo + 1)
return false;
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
if (!CI)
return false;
return CI->getValue()[0];
}
};
/// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
/// qualified \c MDNods.
/// @{
using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
/// @}
/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
class TBAAStructTypeNode {
/// This node should be created with createTBAATypeNode().
const MDNode *Node = nullptr;
public:
TBAAStructTypeNode() = default;
explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTypeNode.
const MDNode *getNode() const { return Node; }
/// isNewFormat - Return true iff the wrapped type node is in the new
/// size-aware format.
bool isNewFormat() const { return isNewFormatTypeNode(Node); }
bool operator==(const TBAAStructTypeNode &Other) const {
return getNode() == Other.getNode();
}
/// getId - Return type identifier.
Metadata *getId() const {
return Node->getOperand(isNewFormat() ? 2 : 0);
}
unsigned getNumFields() const {
unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
}
TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
return TBAAStructTypeNode(TypeNode);
}
/// Get this TBAAStructTypeNode's field in the type DAG with
/// given offset. Update the offset to be relative to the field type.
TBAAStructTypeNode getField(uint64_t &Offset) const {
bool NewFormat = isNewFormat();
if (NewFormat) {
// New-format root and scalar type nodes have no fields.
if (Node->getNumOperands() < 6)
return TBAAStructTypeNode();
} else {
// Parent can be omitted for the root node.
if (Node->getNumOperands() < 2)
return TBAAStructTypeNode();
// Fast path for a scalar type node and a struct type node with a single
// field.
if (Node->getNumOperands() <= 3) {
uint64_t Cur = Node->getNumOperands() == 2
? 0
: mdconst::extract<ConstantInt>(Node->getOperand(2))
->getZExtValue();
Offset -= Cur;
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
if (!P)
return TBAAStructTypeNode();
return TBAAStructTypeNode(P);
}
}
// Assume the offsets are in order. We return the previous field if
// the current offset is bigger than the given offset.
unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
unsigned NumOpsPerField = NewFormat ? 3 : 2;
unsigned TheIdx = 0;
for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
Idx += NumOpsPerField) {
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
->getZExtValue();
if (Cur > Offset) {
assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
"TBAAStructTypeNode::getField should have an offset match!");
TheIdx = Idx - NumOpsPerField;
break;
}
}
// Move along the last field.
if (TheIdx == 0)
TheIdx = Node->getNumOperands() - NumOpsPerField;
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
->getZExtValue();
Offset -= Cur;
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
if (!P)
return TBAAStructTypeNode();
return TBAAStructTypeNode(P);
}
};
} // end anonymous namespace
/// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
/// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
/// format.
static bool isStructPathTBAA(const MDNode *MD) {
// Anonymous TBAA root starts with a MDNode and dragonegg uses it as
// a TBAA tag.
return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
}
AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB,
AAQueryInfo &AAQI) {
if (!EnableTBAA)
return AAResultBase::alias(LocA, LocB, AAQI);
// If accesses may alias, chain to the next AliasAnalysis.
if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
return AAResultBase::alias(LocA, LocB, AAQI);
// Otherwise return a definitive result.
return AliasResult::NoAlias;
}
bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
AAQueryInfo &AAQI,
bool OrLocal) {
if (!EnableTBAA)
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
const MDNode *M = Loc.AATags.TBAA;
if (!M)
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
// If this is an "immutable" type, we can assume the pointer is pointing
// to constant memory.
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
return true;
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
}
FunctionModRefBehavior
TypeBasedAAResult::getModRefBehavior(const CallBase *Call) {
if (!EnableTBAA)
return AAResultBase::getModRefBehavior(Call);
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If this is an "immutable" type, we can assume the call doesn't write
// to memory.
if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
Min = FMRB_OnlyReadsMemory;
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
}
FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
// Functions don't have metadata. Just chain to the next implementation.
return AAResultBase::getModRefBehavior(F);
}
ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
const MemoryLocation &Loc,
AAQueryInfo &AAQI) {
if (!EnableTBAA)
return AAResultBase::getModRefInfo(Call, Loc, AAQI);
if (const MDNode *L = Loc.AATags.TBAA)
if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(L, M))
return ModRefInfo::NoModRef;
return AAResultBase::getModRefInfo(Call, Loc, AAQI);
}
ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
const CallBase *Call2,
AAQueryInfo &AAQI) {
if (!EnableTBAA)
return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(M1, M2))
return ModRefInfo::NoModRef;
return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
}
bool MDNode::isTBAAVtableAccess() const {
if (!isStructPathTBAA(this)) {
if (getNumOperands() < 1)
return false;
if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
if (Tag1->getString() == "vtable pointer")
return true;
}
return false;
}
// For struct-path aware TBAA, we use the access type of the tag.
TBAAStructTagNode Tag(this);
TBAAStructTypeNode AccessType(Tag.getAccessType());
if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
if (Id->getString() == "vtable pointer")
return true;
return false;
}
static bool matchAccessTags(const MDNode *A, const MDNode *B,
const MDNode **GenericTag = nullptr);
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
const MDNode *GenericTag;
matchAccessTags(A, B, &GenericTag);
return const_cast<MDNode*>(GenericTag);
}
static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
if (!A || !B)
return nullptr;
if (A == B)
return A;
SmallSetVector<const MDNode *, 4> PathA;
TBAANode TA(A);
while (TA.getNode()) {
if (PathA.count(TA.getNode()))
report_fatal_error("Cycle found in TBAA metadata.");
PathA.insert(TA.getNode());
TA = TA.getParent();
}
SmallSetVector<const MDNode *, 4> PathB;
TBAANode TB(B);
while (TB.getNode()) {
if (PathB.count(TB.getNode()))
report_fatal_error("Cycle found in TBAA metadata.");
PathB.insert(TB.getNode());
TB = TB.getParent();
}
int IA = PathA.size() - 1;
int IB = PathB.size() - 1;
const MDNode *Ret = nullptr;
while (IA >= 0 && IB >= 0) {
if (PathA[IA] == PathB[IB])
Ret = PathA[IA];
else
break;
--IA;
--IB;
}
return Ret;
}
void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
if (Merge) {
N.TBAA =
MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
N.TBAAStruct = nullptr;
N.Scope = MDNode::getMostGenericAliasScope(
N.Scope, getMetadata(LLVMContext::MD_alias_scope));
N.NoAlias =
MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
} else {
N.TBAA = getMetadata(LLVMContext::MD_tbaa);
N.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct);
N.Scope = getMetadata(LLVMContext::MD_alias_scope);
N.NoAlias = getMetadata(LLVMContext::MD_noalias);
}
}
static const MDNode *createAccessTag(const MDNode *AccessType) {
// If there is no access type or the access type is the root node, then
// we don't have any useful access tag to return.
if (!AccessType || AccessType->getNumOperands() < 2)
return nullptr;
Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
if (TBAAStructTypeNode(AccessType).isNewFormat()) {
// TODO: Take access ranges into account when matching access tags and
// fix this code to generate actual access sizes for generic tags.
uint64_t AccessSize = UINT64_MAX;
auto *SizeNode =
ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
const_cast<MDNode*>(AccessType),
OffsetNode, SizeNode};
return MDNode::get(AccessType->getContext(), Ops);
}
Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
const_cast<MDNode*>(AccessType),
OffsetNode};
return MDNode::get(AccessType->getContext(), Ops);
}
static bool hasField(TBAAStructTypeNode BaseType,
TBAAStructTypeNode FieldType) {
for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
TBAAStructTypeNode T = BaseType.getFieldType(I);
if (T == FieldType || hasField(T, FieldType))
return true;
}
return false;
}
/// Return true if for two given accesses, one of the accessed objects may be a
/// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
/// describe the accesses to the base object and the subobject respectively.
/// \p CommonType must be the metadata node describing the common type of the
/// accessed objects. On return, \p MayAlias is set to true iff these accesses
/// may alias and \p Generic, if not null, points to the most generic access
/// tag for the given two.
static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
TBAAStructTagNode SubobjectTag,
const MDNode *CommonType,
const MDNode **GenericTag,
bool &MayAlias) {
// If the base object is of the least common type, then this may be an access
// to its subobject.
if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
BaseTag.getAccessType() == CommonType) {
if (GenericTag)
*GenericTag = createAccessTag(CommonType);
MayAlias = true;
return true;
}
// If the access to the base object is through a field of the subobject's
// type, then this may be an access to that field. To check for that we start
// from the base type, follow the edge with the correct offset in the type DAG
// and adjust the offset until we reach the field type or until we reach the
// access type.
bool NewFormat = BaseTag.isNewFormat();
TBAAStructTypeNode BaseType(BaseTag.getBaseType());
uint64_t OffsetInBase = BaseTag.getOffset();
for (;;) {
// In the old format there is no distinction between fields and parent
// types, so in this case we consider all nodes up to the root.
if (!BaseType.getNode()) {
assert(!NewFormat && "Did not see access type in access path!");
break;
}
if (BaseType.getNode() == SubobjectTag.getBaseType()) {
bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
if (GenericTag) {
*GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
createAccessTag(CommonType);
}
MayAlias = SameMemberAccess;
return true;
}
// With new-format nodes we stop at the access type.
if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
break;
// Follow the edge with the correct offset. Offset will be adjusted to
// be relative to the field type.
BaseType = BaseType.getField(OffsetInBase);
}
// If the base object has a direct or indirect field of the subobject's type,
// then this may be an access to that field. We need this to check now that
// we support aggregates as access types.
if (NewFormat) {
// TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
if (hasField(BaseType, FieldType)) {
if (GenericTag)
*GenericTag = createAccessTag(CommonType);
MayAlias = true;
return true;
}
}
return false;
}
/// matchTags - Return true if the given couple of accesses are allowed to
/// overlap. If \arg GenericTag is not null, then on return it points to the
/// most generic access descriptor for the given two.
static bool matchAccessTags(const MDNode *A, const MDNode *B,
const MDNode **GenericTag) {
if (A == B) {
if (GenericTag)
*GenericTag = A;
return true;
}
// Accesses with no TBAA information may alias with any other accesses.
if (!A || !B) {
if (GenericTag)
*GenericTag = nullptr;
return true;
}
// Verify that both input nodes are struct-path aware. Auto-upgrade should
// have taken care of this.
assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
TBAAStructTagNode TagA(A), TagB(B);
const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
TagB.getAccessType());
// If the final access types have different roots, they're part of different
// potentially unrelated type systems, so we must be conservative.
if (!CommonType) {
if (GenericTag)
*GenericTag = nullptr;
return true;
}
// If one of the accessed objects may be a subobject of the other, then such
// accesses may alias.
bool MayAlias;
if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
CommonType, GenericTag, MayAlias) ||
mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
CommonType, GenericTag, MayAlias))
return MayAlias;
// Otherwise, we've proved there's no alias.
if (GenericTag)
*GenericTag = createAccessTag(CommonType);
return false;
}
/// Aliases - Test whether the access represented by tag A may alias the
/// access represented by tag B.
bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
return matchAccessTags(A, B);
}
AnalysisKey TypeBasedAA::Key;
TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
return TypeBasedAAResult();
}
char TypeBasedAAWrapperPass::ID = 0;
INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
false, true)
ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
return new TypeBasedAAWrapperPass();
}
TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
Result.reset(new TypeBasedAAResult());
return false;
}
bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
Result.reset();
return false;
}
void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
MDNode *AAMDNodes::shiftTBAA(MDNode *MD, size_t Offset) {
// Fast path if there's no offset
if (Offset == 0)
return MD;
// Fast path if there's no path tbaa node (and thus scalar)
if (!isStructPathTBAA(MD))
return MD;
// The correct behavior here is to add the offset into the TBAA
// struct node offset. The base type, however may not have defined
// a type at this additional offset, resulting in errors. Since
// this method is only used within a given load/store access
// the offset provided is only used to subdivide the previous load
// maintaining the validity of the previous TBAA.
//
// This, however, should be revisited in the future.
return MD;
}
MDNode *AAMDNodes::shiftTBAAStruct(MDNode *MD, size_t Offset) {
// Fast path if there's no offset
if (Offset == 0)
return MD;
SmallVector<Metadata *, 3> Sub;
for (size_t i = 0, size = MD->getNumOperands(); i < size; i += 3) {
ConstantInt *InnerOffset = mdconst::extract<ConstantInt>(MD->getOperand(i));
ConstantInt *InnerSize =
mdconst::extract<ConstantInt>(MD->getOperand(i + 1));
// Don't include any triples that aren't in bounds
if (InnerOffset->getZExtValue() + InnerSize->getZExtValue() <= Offset)
continue;
uint64_t NewSize = InnerSize->getZExtValue();
uint64_t NewOffset = InnerOffset->getZExtValue() - Offset;
if (InnerOffset->getZExtValue() < Offset) {
NewOffset = 0;
NewSize -= Offset - InnerOffset->getZExtValue();
}
// Shift the offset of the triple
Sub.push_back(ConstantAsMetadata::get(
ConstantInt::get(InnerOffset->getType(), NewOffset)));
Sub.push_back(ConstantAsMetadata::get(
ConstantInt::get(InnerSize->getType(), NewSize)));
Sub.push_back(MD->getOperand(i + 2));
}
return MDNode::get(MD->getContext(), Sub);
}
|