1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
//===- CalcSpillWeights.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/CodeGen/StackMaps.h"
#include <cassert>
#include <tuple>
using namespace llvm;
#define DEBUG_TYPE "calcspillweights"
void VirtRegAuxInfo::calculateSpillWeightsAndHints() {
LLVM_DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
<< "********** Function: " << MF.getName() << '\n');
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
unsigned Reg = Register::index2VirtReg(I);
if (MRI.reg_nodbg_empty(Reg))
continue;
calculateSpillWeightAndHint(LIS.getInterval(Reg));
}
}
// Return the preferred allocation register for reg, given a COPY instruction.
static Register copyHint(const MachineInstr *MI, unsigned Reg,
const TargetRegisterInfo &TRI,
const MachineRegisterInfo &MRI) {
unsigned Sub, HSub;
Register HReg;
if (MI->getOperand(0).getReg() == Reg) {
Sub = MI->getOperand(0).getSubReg();
HReg = MI->getOperand(1).getReg();
HSub = MI->getOperand(1).getSubReg();
} else {
Sub = MI->getOperand(1).getSubReg();
HReg = MI->getOperand(0).getReg();
HSub = MI->getOperand(0).getSubReg();
}
if (!HReg)
return 0;
if (Register::isVirtualRegister(HReg))
return Sub == HSub ? HReg : Register();
const TargetRegisterClass *rc = MRI.getRegClass(Reg);
MCRegister CopiedPReg = HSub ? TRI.getSubReg(HReg, HSub) : HReg.asMCReg();
if (rc->contains(CopiedPReg))
return CopiedPReg;
// Check if reg:sub matches so that a super register could be hinted.
if (Sub)
return TRI.getMatchingSuperReg(CopiedPReg, Sub, rc);
return 0;
}
// Check if all values in LI are rematerializable
static bool isRematerializable(const LiveInterval &LI, const LiveIntervals &LIS,
const VirtRegMap &VRM,
const TargetInstrInfo &TII) {
unsigned Reg = LI.reg();
unsigned Original = VRM.getOriginal(Reg);
for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
I != E; ++I) {
const VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
if (VNI->isPHIDef())
return false;
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
// Trace copies introduced by live range splitting. The inline
// spiller can rematerialize through these copies, so the spill
// weight must reflect this.
while (MI->isFullCopy()) {
// The copy destination must match the interval register.
if (MI->getOperand(0).getReg() != Reg)
return false;
// Get the source register.
Reg = MI->getOperand(1).getReg();
// If the original (pre-splitting) registers match this
// copy came from a split.
if (!Register::isVirtualRegister(Reg) || VRM.getOriginal(Reg) != Original)
return false;
// Follow the copy live-in value.
const LiveInterval &SrcLI = LIS.getInterval(Reg);
LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
VNI = SrcQ.valueIn();
assert(VNI && "Copy from non-existing value");
if (VNI->isPHIDef())
return false;
MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
}
if (!TII.isTriviallyReMaterializable(*MI, LIS.getAliasAnalysis()))
return false;
}
return true;
}
bool VirtRegAuxInfo::isLiveAtStatepointVarArg(LiveInterval &LI) {
return any_of(VRM.getRegInfo().reg_operands(LI.reg()),
[](MachineOperand &MO) {
MachineInstr *MI = MO.getParent();
if (MI->getOpcode() != TargetOpcode::STATEPOINT)
return false;
return StatepointOpers(MI).getVarIdx() <= MI->getOperandNo(&MO);
});
}
void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &LI) {
float Weight = weightCalcHelper(LI);
// Check if unspillable.
if (Weight < 0)
return;
LI.setWeight(Weight);
}
float VirtRegAuxInfo::futureWeight(LiveInterval &LI, SlotIndex Start,
SlotIndex End) {
return weightCalcHelper(LI, &Start, &End);
}
float VirtRegAuxInfo::weightCalcHelper(LiveInterval &LI, SlotIndex *Start,
SlotIndex *End) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineBasicBlock *MBB = nullptr;
MachineLoop *Loop = nullptr;
bool IsExiting = false;
float TotalWeight = 0;
unsigned NumInstr = 0; // Number of instructions using LI
SmallPtrSet<MachineInstr *, 8> Visited;
std::pair<Register, Register> TargetHint = MRI.getRegAllocationHint(LI.reg());
if (LI.isSpillable()) {
Register Reg = LI.reg();
Register Original = VRM.getOriginal(Reg);
const LiveInterval &OrigInt = LIS.getInterval(Original);
// li comes from a split of OrigInt. If OrigInt was marked
// as not spillable, make sure the new interval is marked
// as not spillable as well.
if (!OrigInt.isSpillable())
LI.markNotSpillable();
}
// Don't recompute spill weight for an unspillable register.
bool IsSpillable = LI.isSpillable();
bool IsLocalSplitArtifact = Start && End;
// Do not update future local split artifacts.
bool ShouldUpdateLI = !IsLocalSplitArtifact;
if (IsLocalSplitArtifact) {
MachineBasicBlock *localMBB = LIS.getMBBFromIndex(*End);
assert(localMBB == LIS.getMBBFromIndex(*Start) &&
"start and end are expected to be in the same basic block");
// Local split artifact will have 2 additional copy instructions and they
// will be in the same BB.
// localLI = COPY other
// ...
// other = COPY localLI
TotalWeight += LiveIntervals::getSpillWeight(true, false, &MBFI, localMBB);
TotalWeight += LiveIntervals::getSpillWeight(false, true, &MBFI, localMBB);
NumInstr += 2;
}
// CopyHint is a sortable hint derived from a COPY instruction.
struct CopyHint {
const Register Reg;
const float Weight;
CopyHint(Register R, float W) : Reg(R), Weight(W) {}
bool operator<(const CopyHint &Rhs) const {
// Always prefer any physreg hint.
if (Reg.isPhysical() != Rhs.Reg.isPhysical())
return Reg.isPhysical();
if (Weight != Rhs.Weight)
return (Weight > Rhs.Weight);
return Reg.id() < Rhs.Reg.id(); // Tie-breaker.
}
};
std::set<CopyHint> CopyHints;
DenseMap<unsigned, float> Hint;
for (MachineRegisterInfo::reg_instr_nodbg_iterator
I = MRI.reg_instr_nodbg_begin(LI.reg()),
E = MRI.reg_instr_nodbg_end();
I != E;) {
MachineInstr *MI = &*(I++);
// For local split artifacts, we are interested only in instructions between
// the expected start and end of the range.
SlotIndex SI = LIS.getInstructionIndex(*MI);
if (IsLocalSplitArtifact && ((SI < *Start) || (SI > *End)))
continue;
NumInstr++;
if (MI->isIdentityCopy() || MI->isImplicitDef())
continue;
if (!Visited.insert(MI).second)
continue;
// For terminators that produce values, ask the backend if the register is
// not spillable.
if (TII.isUnspillableTerminator(MI) && MI->definesRegister(LI.reg())) {
LI.markNotSpillable();
return -1.0f;
}
float Weight = 1.0f;
if (IsSpillable) {
// Get loop info for mi.
if (MI->getParent() != MBB) {
MBB = MI->getParent();
Loop = Loops.getLoopFor(MBB);
IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
}
// Calculate instr weight.
bool Reads, Writes;
std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
Weight = LiveIntervals::getSpillWeight(Writes, Reads, &MBFI, *MI);
// Give extra weight to what looks like a loop induction variable update.
if (Writes && IsExiting && LIS.isLiveOutOfMBB(LI, MBB))
Weight *= 3;
TotalWeight += Weight;
}
// Get allocation hints from copies.
if (!MI->isCopy())
continue;
Register HintReg = copyHint(MI, LI.reg(), TRI, MRI);
if (!HintReg)
continue;
// Force hweight onto the stack so that x86 doesn't add hidden precision,
// making the comparison incorrectly pass (i.e., 1 > 1 == true??).
//
// FIXME: we probably shouldn't use floats at all.
volatile float HWeight = Hint[HintReg] += Weight;
if (HintReg.isVirtual() || MRI.isAllocatable(HintReg))
CopyHints.insert(CopyHint(HintReg, HWeight));
}
// Pass all the sorted copy hints to mri.
if (ShouldUpdateLI && CopyHints.size()) {
// Remove a generic hint if previously added by target.
if (TargetHint.first == 0 && TargetHint.second)
MRI.clearSimpleHint(LI.reg());
std::set<Register> HintedRegs;
for (auto &Hint : CopyHints) {
if (!HintedRegs.insert(Hint.Reg).second ||
(TargetHint.first != 0 && Hint.Reg == TargetHint.second))
// Don't add the same reg twice or the target-type hint again.
continue;
MRI.addRegAllocationHint(LI.reg(), Hint.Reg);
}
// Weakly boost the spill weight of hinted registers.
TotalWeight *= 1.01F;
}
// If the live interval was already unspillable, leave it that way.
if (!IsSpillable)
return -1.0;
// Mark li as unspillable if all live ranges are tiny and the interval
// is not live at any reg mask. If the interval is live at a reg mask
// spilling may be required. If li is live as use in statepoint instruction
// spilling may be required due to if we mark interval with use in statepoint
// as not spillable we are risky to end up with no register to allocate.
// At the same time STATEPOINT instruction is perfectly fine to have this
// operand on stack, so spilling such interval and folding its load from stack
// into instruction itself makes perfect sense.
if (ShouldUpdateLI && LI.isZeroLength(LIS.getSlotIndexes()) &&
!LI.isLiveAtIndexes(LIS.getRegMaskSlots()) &&
!isLiveAtStatepointVarArg(LI)) {
LI.markNotSpillable();
return -1.0;
}
// If all of the definitions of the interval are re-materializable,
// it is a preferred candidate for spilling.
// FIXME: this gets much more complicated once we support non-trivial
// re-materialization.
if (isRematerializable(LI, LIS, VRM, *MF.getSubtarget().getInstrInfo()))
TotalWeight *= 0.5F;
if (IsLocalSplitArtifact)
return normalize(TotalWeight, Start->distance(*End), NumInstr);
return normalize(TotalWeight, LI.getSize(), NumInstr);
}
|