1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
//===- MacroFusion.cpp - Macro Fusion -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file contains the implementation of the DAG scheduling mutation
/// to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MacroFusion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "machine-scheduler"
STATISTIC(NumFused, "Number of instr pairs fused");
using namespace llvm;
static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
cl::desc("Enable scheduling for macro fusion."), cl::init(true));
static bool isHazard(const SDep &Dep) {
return Dep.getKind() == SDep::Anti || Dep.getKind() == SDep::Output;
}
static SUnit *getPredClusterSU(const SUnit &SU) {
for (const SDep &SI : SU.Preds)
if (SI.isCluster())
return SI.getSUnit();
return nullptr;
}
static bool hasLessThanNumFused(const SUnit &SU, unsigned FuseLimit) {
unsigned Num = 1;
const SUnit *CurrentSU = &SU;
while ((CurrentSU = getPredClusterSU(*CurrentSU)) && Num < FuseLimit) Num ++;
return Num < FuseLimit;
}
static bool fuseInstructionPair(ScheduleDAGInstrs &DAG, SUnit &FirstSU,
SUnit &SecondSU) {
// Check that neither instr is already paired with another along the edge
// between them.
for (SDep &SI : FirstSU.Succs)
if (SI.isCluster())
return false;
for (SDep &SI : SecondSU.Preds)
if (SI.isCluster())
return false;
// Though the reachability checks above could be made more generic,
// perhaps as part of ScheduleDAGInstrs::addEdge(), since such edges are valid,
// the extra computation cost makes it less interesting in general cases.
// Create a single weak edge between the adjacent instrs. The only effect is
// to cause bottom-up scheduling to heavily prioritize the clustered instrs.
if (!DAG.addEdge(&SecondSU, SDep(&FirstSU, SDep::Cluster)))
return false;
// TODO - If we want to chain more than two instructions, we need to create
// artifical edges to make dependencies from the FirstSU also dependent
// on other chained instructions, and other chained instructions also
// dependent on the dependencies of the SecondSU, to prevent them from being
// scheduled into these chained instructions.
assert(hasLessThanNumFused(FirstSU, 2) &&
"Currently we only support chaining together two instructions");
// Adjust the latency between both instrs.
for (SDep &SI : FirstSU.Succs)
if (SI.getSUnit() == &SecondSU)
SI.setLatency(0);
for (SDep &SI : SecondSU.Preds)
if (SI.getSUnit() == &FirstSU)
SI.setLatency(0);
LLVM_DEBUG(
dbgs() << "Macro fuse: "; DAG.dumpNodeName(FirstSU); dbgs() << " - ";
DAG.dumpNodeName(SecondSU); dbgs() << " / ";
dbgs() << DAG.TII->getName(FirstSU.getInstr()->getOpcode()) << " - "
<< DAG.TII->getName(SecondSU.getInstr()->getOpcode()) << '\n';);
// Make data dependencies from the FirstSU also dependent on the SecondSU to
// prevent them from being scheduled between the FirstSU and the SecondSU.
if (&SecondSU != &DAG.ExitSU)
for (const SDep &SI : FirstSU.Succs) {
SUnit *SU = SI.getSUnit();
if (SI.isWeak() || isHazard(SI) ||
SU == &DAG.ExitSU || SU == &SecondSU || SU->isPred(&SecondSU))
continue;
LLVM_DEBUG(dbgs() << " Bind "; DAG.dumpNodeName(SecondSU);
dbgs() << " - "; DAG.dumpNodeName(*SU); dbgs() << '\n';);
DAG.addEdge(SU, SDep(&SecondSU, SDep::Artificial));
}
// Make the FirstSU also dependent on the dependencies of the SecondSU to
// prevent them from being scheduled between the FirstSU and the SecondSU.
if (&FirstSU != &DAG.EntrySU) {
for (const SDep &SI : SecondSU.Preds) {
SUnit *SU = SI.getSUnit();
if (SI.isWeak() || isHazard(SI) || &FirstSU == SU || FirstSU.isSucc(SU))
continue;
LLVM_DEBUG(dbgs() << " Bind "; DAG.dumpNodeName(*SU); dbgs() << " - ";
DAG.dumpNodeName(FirstSU); dbgs() << '\n';);
DAG.addEdge(&FirstSU, SDep(SU, SDep::Artificial));
}
// ExitSU comes last by design, which acts like an implicit dependency
// between ExitSU and any bottom root in the graph. We should transfer
// this to FirstSU as well.
if (&SecondSU == &DAG.ExitSU) {
for (SUnit &SU : DAG.SUnits) {
if (SU.Succs.empty())
DAG.addEdge(&FirstSU, SDep(&SU, SDep::Artificial));
}
}
}
++NumFused;
return true;
}
namespace {
/// Post-process the DAG to create cluster edges between instrs that may
/// be fused by the processor into a single operation.
class MacroFusion : public ScheduleDAGMutation {
ShouldSchedulePredTy shouldScheduleAdjacent;
bool FuseBlock;
bool scheduleAdjacentImpl(ScheduleDAGInstrs &DAG, SUnit &AnchorSU);
public:
MacroFusion(ShouldSchedulePredTy shouldScheduleAdjacent, bool FuseBlock)
: shouldScheduleAdjacent(shouldScheduleAdjacent), FuseBlock(FuseBlock) {}
void apply(ScheduleDAGInstrs *DAGInstrs) override;
};
} // end anonymous namespace
void MacroFusion::apply(ScheduleDAGInstrs *DAG) {
if (FuseBlock)
// For each of the SUnits in the scheduling block, try to fuse the instr in
// it with one in its predecessors.
for (SUnit &ISU : DAG->SUnits)
scheduleAdjacentImpl(*DAG, ISU);
if (DAG->ExitSU.getInstr())
// Try to fuse the instr in the ExitSU with one in its predecessors.
scheduleAdjacentImpl(*DAG, DAG->ExitSU);
}
/// Implement the fusion of instr pairs in the scheduling DAG,
/// anchored at the instr in AnchorSU..
bool MacroFusion::scheduleAdjacentImpl(ScheduleDAGInstrs &DAG, SUnit &AnchorSU) {
const MachineInstr &AnchorMI = *AnchorSU.getInstr();
const TargetInstrInfo &TII = *DAG.TII;
const TargetSubtargetInfo &ST = DAG.MF.getSubtarget();
// Check if the anchor instr may be fused.
if (!shouldScheduleAdjacent(TII, ST, nullptr, AnchorMI))
return false;
// Explorer for fusion candidates among the dependencies of the anchor instr.
for (SDep &Dep : AnchorSU.Preds) {
// Ignore dependencies other than data or strong ordering.
if (Dep.isWeak() || isHazard(Dep))
continue;
SUnit &DepSU = *Dep.getSUnit();
if (DepSU.isBoundaryNode())
continue;
// Only chain two instructions together at most.
const MachineInstr *DepMI = DepSU.getInstr();
if (!hasLessThanNumFused(DepSU, 2) ||
!shouldScheduleAdjacent(TII, ST, DepMI, AnchorMI))
continue;
if (fuseInstructionPair(DAG, DepSU, AnchorSU))
return true;
}
return false;
}
std::unique_ptr<ScheduleDAGMutation>
llvm::createMacroFusionDAGMutation(
ShouldSchedulePredTy shouldScheduleAdjacent) {
if(EnableMacroFusion)
return std::make_unique<MacroFusion>(shouldScheduleAdjacent, true);
return nullptr;
}
std::unique_ptr<ScheduleDAGMutation>
llvm::createBranchMacroFusionDAGMutation(
ShouldSchedulePredTy shouldScheduleAdjacent) {
if(EnableMacroFusion)
return std::make_unique<MacroFusion>(shouldScheduleAdjacent, false);
return nullptr;
}
|