1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
//===----------------------- LSUnit.cpp --------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// A Load-Store Unit for the llvm-mca tool.
///
//===----------------------------------------------------------------------===//
#include "llvm/MCA/HardwareUnits/LSUnit.h"
#include "llvm/MCA/Instruction.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "llvm-mca"
namespace llvm {
namespace mca {
LSUnitBase::LSUnitBase(const MCSchedModel &SM, unsigned LQ, unsigned SQ,
bool AssumeNoAlias)
: LQSize(LQ), SQSize(SQ), UsedLQEntries(0), UsedSQEntries(0),
NoAlias(AssumeNoAlias), NextGroupID(1) {
if (SM.hasExtraProcessorInfo()) {
const MCExtraProcessorInfo &EPI = SM.getExtraProcessorInfo();
if (!LQSize && EPI.LoadQueueID) {
const MCProcResourceDesc &LdQDesc = *SM.getProcResource(EPI.LoadQueueID);
LQSize = std::max(0, LdQDesc.BufferSize);
}
if (!SQSize && EPI.StoreQueueID) {
const MCProcResourceDesc &StQDesc = *SM.getProcResource(EPI.StoreQueueID);
SQSize = std::max(0, StQDesc.BufferSize);
}
}
}
LSUnitBase::~LSUnitBase() {}
void LSUnitBase::cycleEvent() {
for (const std::pair<unsigned, std::unique_ptr<MemoryGroup>> &G : Groups)
G.second->cycleEvent();
}
#ifndef NDEBUG
void LSUnitBase::dump() const {
dbgs() << "[LSUnit] LQ_Size = " << getLoadQueueSize() << '\n';
dbgs() << "[LSUnit] SQ_Size = " << getStoreQueueSize() << '\n';
dbgs() << "[LSUnit] NextLQSlotIdx = " << getUsedLQEntries() << '\n';
dbgs() << "[LSUnit] NextSQSlotIdx = " << getUsedSQEntries() << '\n';
dbgs() << "\n";
for (const auto &GroupIt : Groups) {
const MemoryGroup &Group = *GroupIt.second;
dbgs() << "[LSUnit] Group (" << GroupIt.first << "): "
<< "[ #Preds = " << Group.getNumPredecessors()
<< ", #GIssued = " << Group.getNumExecutingPredecessors()
<< ", #GExecuted = " << Group.getNumExecutedPredecessors()
<< ", #Inst = " << Group.getNumInstructions()
<< ", #IIssued = " << Group.getNumExecuting()
<< ", #IExecuted = " << Group.getNumExecuted() << '\n';
}
}
#endif
unsigned LSUnit::dispatch(const InstRef &IR) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
unsigned IsMemBarrier = Desc.HasSideEffects;
assert((Desc.MayLoad || Desc.MayStore) && "Not a memory operation!");
if (Desc.MayLoad)
acquireLQSlot();
if (Desc.MayStore)
acquireSQSlot();
if (Desc.MayStore) {
unsigned NewGID = createMemoryGroup();
MemoryGroup &NewGroup = getGroup(NewGID);
NewGroup.addInstruction();
// A store may not pass a previous load or load barrier.
unsigned ImmediateLoadDominator =
std::max(CurrentLoadGroupID, CurrentLoadBarrierGroupID);
if (ImmediateLoadDominator) {
MemoryGroup &IDom = getGroup(ImmediateLoadDominator);
LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << ImmediateLoadDominator
<< ") --> (" << NewGID << ")\n");
IDom.addSuccessor(&NewGroup, !assumeNoAlias());
}
// A store may not pass a previous store barrier.
if (CurrentStoreBarrierGroupID) {
MemoryGroup &StoreGroup = getGroup(CurrentStoreBarrierGroupID);
LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: ("
<< CurrentStoreBarrierGroupID
<< ") --> (" << NewGID << ")\n");
StoreGroup.addSuccessor(&NewGroup, true);
}
// A store may not pass a previous store.
if (CurrentStoreGroupID &&
(CurrentStoreGroupID != CurrentStoreBarrierGroupID)) {
MemoryGroup &StoreGroup = getGroup(CurrentStoreGroupID);
LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << CurrentStoreGroupID
<< ") --> (" << NewGID << ")\n");
StoreGroup.addSuccessor(&NewGroup, !assumeNoAlias());
}
CurrentStoreGroupID = NewGID;
if (IsMemBarrier)
CurrentStoreBarrierGroupID = NewGID;
if (Desc.MayLoad) {
CurrentLoadGroupID = NewGID;
if (IsMemBarrier)
CurrentLoadBarrierGroupID = NewGID;
}
return NewGID;
}
assert(Desc.MayLoad && "Expected a load!");
unsigned ImmediateLoadDominator =
std::max(CurrentLoadGroupID, CurrentLoadBarrierGroupID);
// A new load group is created if we are in one of the following situations:
// 1) This is a load barrier (by construction, a load barrier is always
// assigned to a different memory group).
// 2) There is no load in flight (by construction we always keep loads and
// stores into separate memory groups).
// 3) There is a load barrier in flight. This load depends on it.
// 4) There is an intervening store between the last load dispatched to the
// LSU and this load. We always create a new group even if this load
// does not alias the last dispatched store.
// 5) There is no intervening store and there is an active load group.
// However that group has already started execution, so we cannot add
// this load to it.
bool ShouldCreateANewGroup =
IsMemBarrier || !ImmediateLoadDominator ||
CurrentLoadBarrierGroupID == ImmediateLoadDominator ||
ImmediateLoadDominator <= CurrentStoreGroupID ||
getGroup(ImmediateLoadDominator).isExecuting();
if (ShouldCreateANewGroup) {
unsigned NewGID = createMemoryGroup();
MemoryGroup &NewGroup = getGroup(NewGID);
NewGroup.addInstruction();
// A load may not pass a previous store or store barrier
// unless flag 'NoAlias' is set.
if (!assumeNoAlias() && CurrentStoreGroupID) {
MemoryGroup &StoreGroup = getGroup(CurrentStoreGroupID);
LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << CurrentStoreGroupID
<< ") --> (" << NewGID << ")\n");
StoreGroup.addSuccessor(&NewGroup, true);
}
// A load barrier may not pass a previous load or load barrier.
if (IsMemBarrier) {
if (ImmediateLoadDominator) {
MemoryGroup &LoadGroup = getGroup(ImmediateLoadDominator);
LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: ("
<< ImmediateLoadDominator
<< ") --> (" << NewGID << ")\n");
LoadGroup.addSuccessor(&NewGroup, true);
}
} else {
// A younger load cannot pass a older load barrier.
if (CurrentLoadBarrierGroupID) {
MemoryGroup &LoadGroup = getGroup(CurrentLoadBarrierGroupID);
LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: ("
<< CurrentLoadBarrierGroupID
<< ") --> (" << NewGID << ")\n");
LoadGroup.addSuccessor(&NewGroup, true);
}
}
CurrentLoadGroupID = NewGID;
if (IsMemBarrier)
CurrentLoadBarrierGroupID = NewGID;
return NewGID;
}
// A load may pass a previous load.
MemoryGroup &Group = getGroup(CurrentLoadGroupID);
Group.addInstruction();
return CurrentLoadGroupID;
}
LSUnit::Status LSUnit::isAvailable(const InstRef &IR) const {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
if (Desc.MayLoad && isLQFull())
return LSUnit::LSU_LQUEUE_FULL;
if (Desc.MayStore && isSQFull())
return LSUnit::LSU_SQUEUE_FULL;
return LSUnit::LSU_AVAILABLE;
}
void LSUnitBase::onInstructionExecuted(const InstRef &IR) {
unsigned GroupID = IR.getInstruction()->getLSUTokenID();
auto It = Groups.find(GroupID);
assert(It != Groups.end() && "Instruction not dispatched to the LS unit");
It->second->onInstructionExecuted(IR);
if (It->second->isExecuted())
Groups.erase(It);
}
void LSUnitBase::onInstructionRetired(const InstRef &IR) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
bool IsALoad = Desc.MayLoad;
bool IsAStore = Desc.MayStore;
assert((IsALoad || IsAStore) && "Expected a memory operation!");
if (IsALoad) {
releaseLQSlot();
LLVM_DEBUG(dbgs() << "[LSUnit]: Instruction idx=" << IR.getSourceIndex()
<< " has been removed from the load queue.\n");
}
if (IsAStore) {
releaseSQSlot();
LLVM_DEBUG(dbgs() << "[LSUnit]: Instruction idx=" << IR.getSourceIndex()
<< " has been removed from the store queue.\n");
}
}
void LSUnit::onInstructionExecuted(const InstRef &IR) {
const Instruction &IS = *IR.getInstruction();
if (!IS.isMemOp())
return;
LSUnitBase::onInstructionExecuted(IR);
unsigned GroupID = IS.getLSUTokenID();
if (!isValidGroupID(GroupID)) {
if (GroupID == CurrentLoadGroupID)
CurrentLoadGroupID = 0;
if (GroupID == CurrentStoreGroupID)
CurrentStoreGroupID = 0;
if (GroupID == CurrentLoadBarrierGroupID)
CurrentLoadBarrierGroupID = 0;
if (GroupID == CurrentStoreBarrierGroupID)
CurrentStoreBarrierGroupID = 0;
}
}
} // namespace mca
} // namespace llvm
|