1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
//===--------------------- DispatchStage.cpp --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file models the dispatch component of an instruction pipeline.
///
/// The DispatchStage is responsible for updating instruction dependencies
/// and communicating to the simulated instruction scheduler that an instruction
/// is ready to be scheduled for execution.
///
//===----------------------------------------------------------------------===//
#include "llvm/MCA/Stages/DispatchStage.h"
#include "llvm/MCA/HWEventListener.h"
#include "llvm/MCA/HardwareUnits/Scheduler.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "llvm-mca"
namespace llvm {
namespace mca {
DispatchStage::DispatchStage(const MCSubtargetInfo &Subtarget,
const MCRegisterInfo &MRI,
unsigned MaxDispatchWidth, RetireControlUnit &R,
RegisterFile &F)
: DispatchWidth(MaxDispatchWidth), AvailableEntries(MaxDispatchWidth),
CarryOver(0U), CarriedOver(), STI(Subtarget), RCU(R), PRF(F) {
if (!DispatchWidth)
DispatchWidth = Subtarget.getSchedModel().IssueWidth;
}
void DispatchStage::notifyInstructionDispatched(const InstRef &IR,
ArrayRef<unsigned> UsedRegs,
unsigned UOps) const {
LLVM_DEBUG(dbgs() << "[E] Instruction Dispatched: #" << IR << '\n');
notifyEvent<HWInstructionEvent>(
HWInstructionDispatchedEvent(IR, UsedRegs, UOps));
}
bool DispatchStage::checkPRF(const InstRef &IR) const {
SmallVector<MCPhysReg, 4> RegDefs;
for (const WriteState &RegDef : IR.getInstruction()->getDefs())
RegDefs.emplace_back(RegDef.getRegisterID());
const unsigned RegisterMask = PRF.isAvailable(RegDefs);
// A mask with all zeroes means: register files are available.
if (RegisterMask) {
notifyEvent<HWStallEvent>(
HWStallEvent(HWStallEvent::RegisterFileStall, IR));
return false;
}
return true;
}
bool DispatchStage::checkRCU(const InstRef &IR) const {
const unsigned NumMicroOps = IR.getInstruction()->getNumMicroOps();
if (RCU.isAvailable(NumMicroOps))
return true;
notifyEvent<HWStallEvent>(
HWStallEvent(HWStallEvent::RetireControlUnitStall, IR));
return false;
}
bool DispatchStage::canDispatch(const InstRef &IR) const {
bool CanDispatch = checkRCU(IR);
CanDispatch &= checkPRF(IR);
CanDispatch &= checkNextStage(IR);
return CanDispatch;
}
Error DispatchStage::dispatch(InstRef IR) {
assert(!CarryOver && "Cannot dispatch another instruction!");
Instruction &IS = *IR.getInstruction();
const InstrDesc &Desc = IS.getDesc();
const unsigned NumMicroOps = IS.getNumMicroOps();
if (NumMicroOps > DispatchWidth) {
assert(AvailableEntries == DispatchWidth);
AvailableEntries = 0;
CarryOver = NumMicroOps - DispatchWidth;
CarriedOver = IR;
} else {
assert(AvailableEntries >= NumMicroOps);
AvailableEntries -= NumMicroOps;
}
// Check if this instructions ends the dispatch group.
if (Desc.EndGroup)
AvailableEntries = 0;
// Check if this is an optimizable reg-reg move or an XCHG-like instruction.
if (IS.isOptimizableMove())
if (PRF.tryEliminateMoveOrSwap(IS.getDefs(), IS.getUses()))
IS.setEliminated();
// A dependency-breaking instruction doesn't have to wait on the register
// input operands, and it is often optimized at register renaming stage.
// Update RAW dependencies if this instruction is not a dependency-breaking
// instruction. A dependency-breaking instruction is a zero-latency
// instruction that doesn't consume hardware resources.
// An example of dependency-breaking instruction on X86 is a zero-idiom XOR.
//
// We also don't update data dependencies for instructions that have been
// eliminated at register renaming stage.
if (!IS.isEliminated()) {
for (ReadState &RS : IS.getUses())
PRF.addRegisterRead(RS, STI);
}
// By default, a dependency-breaking zero-idiom is expected to be optimized
// at register renaming stage. That means, no physical register is allocated
// to the instruction.
SmallVector<unsigned, 4> RegisterFiles(PRF.getNumRegisterFiles());
for (WriteState &WS : IS.getDefs())
PRF.addRegisterWrite(WriteRef(IR.getSourceIndex(), &WS), RegisterFiles);
// Reserve entries in the reorder buffer.
unsigned RCUTokenID = RCU.dispatch(IR);
// Notify the instruction that it has been dispatched.
IS.dispatch(RCUTokenID);
// Notify listeners of the "instruction dispatched" event,
// and move IR to the next stage.
notifyInstructionDispatched(IR, RegisterFiles,
std::min(DispatchWidth, NumMicroOps));
return moveToTheNextStage(IR);
}
Error DispatchStage::cycleStart() {
// The retire stage is responsible for calling method `cycleStart`
// on the PRF.
if (!CarryOver) {
AvailableEntries = DispatchWidth;
return ErrorSuccess();
}
AvailableEntries = CarryOver >= DispatchWidth ? 0 : DispatchWidth - CarryOver;
unsigned DispatchedOpcodes = DispatchWidth - AvailableEntries;
CarryOver -= DispatchedOpcodes;
assert(CarriedOver && "Invalid dispatched instruction");
SmallVector<unsigned, 8> RegisterFiles(PRF.getNumRegisterFiles(), 0U);
notifyInstructionDispatched(CarriedOver, RegisterFiles, DispatchedOpcodes);
if (!CarryOver)
CarriedOver = InstRef();
return ErrorSuccess();
}
bool DispatchStage::isAvailable(const InstRef &IR) const {
// Conservatively bail out if there are no available dispatch entries.
if (!AvailableEntries)
return false;
const Instruction &Inst = *IR.getInstruction();
unsigned NumMicroOps = Inst.getNumMicroOps();
const InstrDesc &Desc = Inst.getDesc();
unsigned Required = std::min(NumMicroOps, DispatchWidth);
if (Required > AvailableEntries)
return false;
if (Desc.BeginGroup && AvailableEntries != DispatchWidth)
return false;
// The dispatch logic doesn't internally buffer instructions. It only accepts
// instructions that can be successfully moved to the next stage during this
// same cycle.
return canDispatch(IR);
}
Error DispatchStage::execute(InstRef &IR) {
assert(canDispatch(IR) && "Cannot dispatch another instruction!");
return dispatch(IR);
}
#ifndef NDEBUG
void DispatchStage::dump() const {
PRF.dump();
RCU.dump();
}
#endif
} // namespace mca
} // namespace llvm
|