1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
//===---------------------- ExecuteStage.cpp --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines the execution stage of an instruction pipeline.
///
/// The ExecuteStage is responsible for managing the hardware scheduler
/// and issuing notifications that an instruction has been executed.
///
//===----------------------------------------------------------------------===//
#include "llvm/MCA/Stages/ExecuteStage.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "llvm-mca"
namespace llvm {
namespace mca {
HWStallEvent::GenericEventType toHWStallEventType(Scheduler::Status Status) {
switch (Status) {
case Scheduler::SC_LOAD_QUEUE_FULL:
return HWStallEvent::LoadQueueFull;
case Scheduler::SC_STORE_QUEUE_FULL:
return HWStallEvent::StoreQueueFull;
case Scheduler::SC_BUFFERS_FULL:
return HWStallEvent::SchedulerQueueFull;
case Scheduler::SC_DISPATCH_GROUP_STALL:
return HWStallEvent::DispatchGroupStall;
case Scheduler::SC_AVAILABLE:
return HWStallEvent::Invalid;
}
llvm_unreachable("Don't know how to process this StallKind!");
}
bool ExecuteStage::isAvailable(const InstRef &IR) const {
if (Scheduler::Status S = HWS.isAvailable(IR)) {
HWStallEvent::GenericEventType ET = toHWStallEventType(S);
notifyEvent<HWStallEvent>(HWStallEvent(ET, IR));
return false;
}
return true;
}
Error ExecuteStage::issueInstruction(InstRef &IR) {
SmallVector<ResourceUse, 4> Used;
SmallVector<InstRef, 4> Pending;
SmallVector<InstRef, 4> Ready;
HWS.issueInstruction(IR, Used, Pending, Ready);
Instruction &IS = *IR.getInstruction();
NumIssuedOpcodes += IS.getNumMicroOps();
notifyReservedOrReleasedBuffers(IR, /* Reserved */ false);
notifyInstructionIssued(IR, Used);
if (IS.isExecuted()) {
notifyInstructionExecuted(IR);
// FIXME: add a buffer of executed instructions.
if (Error S = moveToTheNextStage(IR))
return S;
}
for (const InstRef &I : Pending)
notifyInstructionPending(I);
for (const InstRef &I : Ready)
notifyInstructionReady(I);
return ErrorSuccess();
}
Error ExecuteStage::issueReadyInstructions() {
InstRef IR = HWS.select();
while (IR) {
if (Error Err = issueInstruction(IR))
return Err;
// Select the next instruction to issue.
IR = HWS.select();
}
return ErrorSuccess();
}
Error ExecuteStage::cycleStart() {
SmallVector<ResourceRef, 8> Freed;
SmallVector<InstRef, 4> Executed;
SmallVector<InstRef, 4> Pending;
SmallVector<InstRef, 4> Ready;
HWS.cycleEvent(Freed, Executed, Pending, Ready);
NumDispatchedOpcodes = 0;
NumIssuedOpcodes = 0;
for (const ResourceRef &RR : Freed)
notifyResourceAvailable(RR);
for (InstRef &IR : Executed) {
notifyInstructionExecuted(IR);
// FIXME: add a buffer of executed instructions.
if (Error S = moveToTheNextStage(IR))
return S;
}
for (const InstRef &IR : Pending)
notifyInstructionPending(IR);
for (const InstRef &IR : Ready)
notifyInstructionReady(IR);
return issueReadyInstructions();
}
Error ExecuteStage::cycleEnd() {
if (!EnablePressureEvents)
return ErrorSuccess();
// Always conservatively report any backpressure events if the dispatch logic
// was stalled due to unavailable scheduler resources.
if (!HWS.hadTokenStall() && NumDispatchedOpcodes <= NumIssuedOpcodes)
return ErrorSuccess();
SmallVector<InstRef, 8> Insts;
uint64_t Mask = HWS.analyzeResourcePressure(Insts);
if (Mask) {
LLVM_DEBUG(dbgs() << "[E] Backpressure increased because of unavailable "
"pipeline resources: "
<< format_hex(Mask, 16) << '\n');
HWPressureEvent Ev(HWPressureEvent::RESOURCES, Insts, Mask);
notifyEvent(Ev);
}
SmallVector<InstRef, 8> RegDeps;
SmallVector<InstRef, 8> MemDeps;
HWS.analyzeDataDependencies(RegDeps, MemDeps);
if (RegDeps.size()) {
LLVM_DEBUG(
dbgs() << "[E] Backpressure increased by register dependencies\n");
HWPressureEvent Ev(HWPressureEvent::REGISTER_DEPS, RegDeps);
notifyEvent(Ev);
}
if (MemDeps.size()) {
LLVM_DEBUG(dbgs() << "[E] Backpressure increased by memory dependencies\n");
HWPressureEvent Ev(HWPressureEvent::MEMORY_DEPS, MemDeps);
notifyEvent(Ev);
}
return ErrorSuccess();
}
#ifndef NDEBUG
static void verifyInstructionEliminated(const InstRef &IR) {
const Instruction &Inst = *IR.getInstruction();
assert(Inst.isEliminated() && "Instruction was not eliminated!");
assert(Inst.isReady() && "Instruction in an inconsistent state!");
// Ensure that instructions eliminated at register renaming stage are in a
// consistent state.
const InstrDesc &Desc = Inst.getDesc();
assert(!Desc.MayLoad && !Desc.MayStore && "Cannot eliminate a memory op!");
}
#endif
Error ExecuteStage::handleInstructionEliminated(InstRef &IR) {
#ifndef NDEBUG
verifyInstructionEliminated(IR);
#endif
notifyInstructionPending(IR);
notifyInstructionReady(IR);
notifyInstructionIssued(IR, {});
IR.getInstruction()->forceExecuted();
notifyInstructionExecuted(IR);
return moveToTheNextStage(IR);
}
// Schedule the instruction for execution on the hardware.
Error ExecuteStage::execute(InstRef &IR) {
assert(isAvailable(IR) && "Scheduler is not available!");
#ifndef NDEBUG
// Ensure that the HWS has not stored this instruction in its queues.
HWS.sanityCheck(IR);
#endif
if (IR.getInstruction()->isEliminated())
return handleInstructionEliminated(IR);
// Reserve a slot in each buffered resource. Also, mark units with
// BufferSize=0 as reserved. Resources with a buffer size of zero will only
// be released after MCIS is issued, and all the ResourceCycles for those
// units have been consumed.
bool IsReadyInstruction = HWS.dispatch(IR);
const Instruction &Inst = *IR.getInstruction();
unsigned NumMicroOps = Inst.getNumMicroOps();
NumDispatchedOpcodes += NumMicroOps;
notifyReservedOrReleasedBuffers(IR, /* Reserved */ true);
if (!IsReadyInstruction) {
if (Inst.isPending())
notifyInstructionPending(IR);
return ErrorSuccess();
}
notifyInstructionPending(IR);
// If we did not return early, then the scheduler is ready for execution.
notifyInstructionReady(IR);
// If we cannot issue immediately, the HWS will add IR to its ready queue for
// execution later, so we must return early here.
if (!HWS.mustIssueImmediately(IR))
return ErrorSuccess();
// Issue IR to the underlying pipelines.
return issueInstruction(IR);
}
void ExecuteStage::notifyInstructionExecuted(const InstRef &IR) const {
LLVM_DEBUG(dbgs() << "[E] Instruction Executed: #" << IR << '\n');
notifyEvent<HWInstructionEvent>(
HWInstructionEvent(HWInstructionEvent::Executed, IR));
}
void ExecuteStage::notifyInstructionPending(const InstRef &IR) const {
LLVM_DEBUG(dbgs() << "[E] Instruction Pending: #" << IR << '\n');
notifyEvent<HWInstructionEvent>(
HWInstructionEvent(HWInstructionEvent::Pending, IR));
}
void ExecuteStage::notifyInstructionReady(const InstRef &IR) const {
LLVM_DEBUG(dbgs() << "[E] Instruction Ready: #" << IR << '\n');
notifyEvent<HWInstructionEvent>(
HWInstructionEvent(HWInstructionEvent::Ready, IR));
}
void ExecuteStage::notifyResourceAvailable(const ResourceRef &RR) const {
LLVM_DEBUG(dbgs() << "[E] Resource Available: [" << RR.first << '.'
<< RR.second << "]\n");
for (HWEventListener *Listener : getListeners())
Listener->onResourceAvailable(RR);
}
void ExecuteStage::notifyInstructionIssued(
const InstRef &IR, MutableArrayRef<ResourceUse> Used) const {
LLVM_DEBUG({
dbgs() << "[E] Instruction Issued: #" << IR << '\n';
for (const ResourceUse &Use : Used) {
assert(Use.second.getDenominator() == 1 && "Invalid cycles!");
dbgs() << "[E] Resource Used: [" << Use.first.first << '.'
<< Use.first.second << "], ";
dbgs() << "cycles: " << Use.second.getNumerator() << '\n';
}
});
// Replace resource masks with valid resource processor IDs.
for (ResourceUse &Use : Used)
Use.first.first = HWS.getResourceID(Use.first.first);
notifyEvent<HWInstructionEvent>(HWInstructionIssuedEvent(IR, Used));
}
void ExecuteStage::notifyReservedOrReleasedBuffers(const InstRef &IR,
bool Reserved) const {
uint64_t UsedBuffers = IR.getInstruction()->getDesc().UsedBuffers;
if (!UsedBuffers)
return;
SmallVector<unsigned, 4> BufferIDs(countPopulation(UsedBuffers), 0);
for (unsigned I = 0, E = BufferIDs.size(); I < E; ++I) {
uint64_t CurrentBufferMask = UsedBuffers & (-UsedBuffers);
BufferIDs[I] = HWS.getResourceID(CurrentBufferMask);
UsedBuffers ^= CurrentBufferMask;
}
if (Reserved) {
for (HWEventListener *Listener : getListeners())
Listener->onReservedBuffers(IR, BufferIDs);
return;
}
for (HWEventListener *Listener : getListeners())
Listener->onReleasedBuffers(IR, BufferIDs);
}
} // namespace mca
} // namespace llvm
|