1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
//====- SHA256.cpp - SHA256 implementation ---*- C++ -* ======//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/*
* The SHA-256 Secure Hash Standard was published by NIST in 2002.
*
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
*
* The implementation is based on nacl's sha256 implementation [0] and LLVM's
* pre-exsiting SHA1 code [1].
*
* [0] https://hyperelliptic.org/nacl/nacl-20110221.tar.bz2 (public domain
* code)
* [1] llvm/lib/Support/SHA1.{h,cpp}
*/
//===----------------------------------------------------------------------===//
#include "llvm/Support/SHA256.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Host.h"
#include <string.h>
namespace llvm {
#if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && BYTE_ORDER == BIG_ENDIAN
#define SHA_BIG_ENDIAN
#endif
#define SHR(x, c) ((x) >> (c))
#define ROTR(x, n) (((x) >> n) | ((x) << (32 - (n))))
#define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define SIGMA_0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define SIGMA_1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define SIGMA_2(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define SIGMA_3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define F_EXPAND(A, B, C, D, E, F, G, H, M1, M2, M3, M4, k) \
do { \
H += SIGMA_1(E) + CH(E, F, G) + M1 + k; \
D += H; \
H += SIGMA_0(A) + MAJ(A, B, C); \
M1 += SIGMA_2(M2) + M3 + SIGMA_3(M4); \
} while (0);
void SHA256::init() {
InternalState.State[0] = 0x6A09E667;
InternalState.State[1] = 0xBB67AE85;
InternalState.State[2] = 0x3C6EF372;
InternalState.State[3] = 0xA54FF53A;
InternalState.State[4] = 0x510E527F;
InternalState.State[5] = 0x9B05688C;
InternalState.State[6] = 0x1F83D9AB;
InternalState.State[7] = 0x5BE0CD19;
InternalState.ByteCount = 0;
InternalState.BufferOffset = 0;
}
void SHA256::hashBlock() {
uint32_t A = InternalState.State[0];
uint32_t B = InternalState.State[1];
uint32_t C = InternalState.State[2];
uint32_t D = InternalState.State[3];
uint32_t E = InternalState.State[4];
uint32_t F = InternalState.State[5];
uint32_t G = InternalState.State[6];
uint32_t H = InternalState.State[7];
uint32_t W00 = InternalState.Buffer.L[0];
uint32_t W01 = InternalState.Buffer.L[1];
uint32_t W02 = InternalState.Buffer.L[2];
uint32_t W03 = InternalState.Buffer.L[3];
uint32_t W04 = InternalState.Buffer.L[4];
uint32_t W05 = InternalState.Buffer.L[5];
uint32_t W06 = InternalState.Buffer.L[6];
uint32_t W07 = InternalState.Buffer.L[7];
uint32_t W08 = InternalState.Buffer.L[8];
uint32_t W09 = InternalState.Buffer.L[9];
uint32_t W10 = InternalState.Buffer.L[10];
uint32_t W11 = InternalState.Buffer.L[11];
uint32_t W12 = InternalState.Buffer.L[12];
uint32_t W13 = InternalState.Buffer.L[13];
uint32_t W14 = InternalState.Buffer.L[14];
uint32_t W15 = InternalState.Buffer.L[15];
F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x428A2F98);
F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x71374491);
F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0xB5C0FBCF);
F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0xE9B5DBA5);
F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x3956C25B);
F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x59F111F1);
F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x923F82A4);
F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0xAB1C5ED5);
F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xD807AA98);
F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x12835B01);
F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x243185BE);
F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x550C7DC3);
F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x72BE5D74);
F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0x80DEB1FE);
F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x9BDC06A7);
F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC19BF174);
F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0xE49B69C1);
F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0xEFBE4786);
F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x0FC19DC6);
F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x240CA1CC);
F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x2DE92C6F);
F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4A7484AA);
F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5CB0A9DC);
F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x76F988DA);
F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x983E5152);
F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA831C66D);
F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xB00327C8);
F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xBF597FC7);
F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xC6E00BF3);
F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD5A79147);
F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x06CA6351);
F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x14292967);
F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x27B70A85);
F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x2E1B2138);
F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x4D2C6DFC);
F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x53380D13);
F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x650A7354);
F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x766A0ABB);
F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x81C2C92E);
F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x92722C85);
F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xA2BFE8A1);
F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA81A664B);
F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xC24B8B70);
F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xC76C51A3);
F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xD192E819);
F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD6990624);
F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xF40E3585);
F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x106AA070);
F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x19A4C116);
F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x1E376C08);
F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x2748774C);
F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x34B0BCB5);
F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x391C0CB3);
F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4ED8AA4A);
F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5B9CCA4F);
F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x682E6FF3);
F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x748F82EE);
F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x78A5636F);
F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x84C87814);
F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x8CC70208);
F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x90BEFFFA);
F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xA4506CEB);
F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xBEF9A3F7);
F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC67178F2);
InternalState.State[0] += A;
InternalState.State[1] += B;
InternalState.State[2] += C;
InternalState.State[3] += D;
InternalState.State[4] += E;
InternalState.State[5] += F;
InternalState.State[6] += G;
InternalState.State[7] += H;
}
void SHA256::addUncounted(uint8_t Data) {
#ifdef SHA_BIG_ENDIAN
InternalState.Buffer.C[InternalState.BufferOffset] = Data;
#else
InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data;
#endif
InternalState.BufferOffset++;
if (InternalState.BufferOffset == BLOCK_LENGTH) {
hashBlock();
InternalState.BufferOffset = 0;
}
}
void SHA256::writebyte(uint8_t Data) {
++InternalState.ByteCount;
addUncounted(Data);
}
void SHA256::update(ArrayRef<uint8_t> Data) {
InternalState.ByteCount += Data.size();
// Finish the current block.
if (InternalState.BufferOffset > 0) {
const size_t Remainder = std::min<size_t>(
Data.size(), BLOCK_LENGTH - InternalState.BufferOffset);
for (size_t I = 0; I < Remainder; ++I)
addUncounted(Data[I]);
Data = Data.drop_front(Remainder);
}
// Fast buffer filling for large inputs.
while (Data.size() >= BLOCK_LENGTH) {
assert(InternalState.BufferOffset == 0);
static_assert(BLOCK_LENGTH % 4 == 0, "");
constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4;
for (size_t I = 0; I < BLOCK_LENGTH_32; ++I)
InternalState.Buffer.L[I] = support::endian::read32be(&Data[I * 4]);
hashBlock();
Data = Data.drop_front(BLOCK_LENGTH);
}
// Finish the remainder.
for (uint8_t C : Data)
addUncounted(C);
}
void SHA256::update(StringRef Str) {
update(
ArrayRef<uint8_t>((uint8_t *)const_cast<char *>(Str.data()), Str.size()));
}
void SHA256::pad() {
// Implement SHA-2 padding (fips180-2 5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
addUncounted(0x80);
while (InternalState.BufferOffset != 56)
addUncounted(0x00);
uint64_t len = InternalState.ByteCount << 3; // bit size
// Append length in the last 8 bytes big edian encoded
addUncounted(len >> 56);
addUncounted(len >> 48);
addUncounted(len >> 40);
addUncounted(len >> 32);
addUncounted(len >> 24);
addUncounted(len >> 16);
addUncounted(len >> 8);
addUncounted(len);
}
StringRef SHA256::final() {
// Pad to complete the last block
pad();
#ifdef SHA_BIG_ENDIAN
// Just copy the current state
for (int i = 0; i < 8; i++) {
HashResult[i] = InternalState.State[i];
}
#else
// Swap byte order back
for (int i = 0; i < 8; i++) {
HashResult[i] = (((InternalState.State[i]) << 24) & 0xff000000) |
(((InternalState.State[i]) << 8) & 0x00ff0000) |
(((InternalState.State[i]) >> 8) & 0x0000ff00) |
(((InternalState.State[i]) >> 24) & 0x000000ff);
}
#endif
// Return pointer to hash (32 characters)
return StringRef((char *)HashResult, HASH_LENGTH);
}
StringRef SHA256::result() {
auto StateToRestore = InternalState;
auto Hash = final();
// Restore the state
InternalState = StateToRestore;
// Return pointer to hash (32 characters)
return Hash;
}
std::array<uint8_t, 32> SHA256::hash(ArrayRef<uint8_t> Data) {
SHA256 Hash;
Hash.update(Data);
StringRef S = Hash.final();
std::array<uint8_t, 32> Arr;
memcpy(Arr.data(), S.data(), S.size());
return Arr;
}
} // namespace llvm
|