1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AArch64Subtarget.h"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64PBQPRegAlloc.h"
#include "AArch64TargetMachine.h"
#include "GISel/AArch64CallLowering.h"
#include "GISel/AArch64LegalizerInfo.h"
#include "GISel/AArch64RegisterBankInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/TargetParser.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-subtarget"
#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "AArch64GenSubtargetInfo.inc"
static cl::opt<bool>
EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
"converter pass"), cl::init(true), cl::Hidden);
// If OS supports TBI, use this flag to enable it.
static cl::opt<bool>
UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of "
"an address is ignored"), cl::init(false), cl::Hidden);
static cl::opt<bool>
UseNonLazyBind("aarch64-enable-nonlazybind",
cl::desc("Call nonlazybind functions via direct GOT load"),
cl::init(false), cl::Hidden);
static cl::opt<bool> UseAA("aarch64-use-aa", cl::init(true),
cl::desc("Enable the use of AA during codegen."));
AArch64Subtarget &
AArch64Subtarget::initializeSubtargetDependencies(StringRef FS,
StringRef CPUString) {
// Determine default and user-specified characteristics
if (CPUString.empty())
CPUString = "generic";
ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FS);
initializeProperties();
return *this;
}
void AArch64Subtarget::initializeProperties() {
// Initialize CPU specific properties. We should add a tablegen feature for
// this in the future so we can specify it together with the subtarget
// features.
switch (ARMProcFamily) {
case Others:
break;
case Carmel:
CacheLineSize = 64;
break;
case CortexA35:
break;
case CortexA53:
case CortexA55:
PrefFunctionLogAlignment = 4;
break;
case CortexA57:
MaxInterleaveFactor = 4;
PrefFunctionLogAlignment = 4;
break;
case CortexA65:
PrefFunctionLogAlignment = 3;
break;
case CortexA72:
case CortexA73:
case CortexA75:
case CortexA76:
case CortexA77:
case CortexA78:
case CortexA78C:
case CortexR82:
case CortexX1:
PrefFunctionLogAlignment = 4;
break;
case A64FX:
CacheLineSize = 256;
PrefFunctionLogAlignment = 3;
PrefLoopLogAlignment = 2;
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
break;
case AppleA7:
case AppleA10:
case AppleA11:
case AppleA12:
case AppleA13:
case AppleA14:
CacheLineSize = 64;
PrefetchDistance = 280;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 3;
break;
case ExynosM3:
MaxInterleaveFactor = 4;
MaxJumpTableSize = 20;
PrefFunctionLogAlignment = 5;
PrefLoopLogAlignment = 4;
break;
case Falkor:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
CacheLineSize = 128;
PrefetchDistance = 820;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 8;
break;
case Kryo:
MaxInterleaveFactor = 4;
VectorInsertExtractBaseCost = 2;
CacheLineSize = 128;
PrefetchDistance = 740;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 11;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case NeoverseE1:
PrefFunctionLogAlignment = 3;
break;
case NeoverseN1:
case NeoverseN2:
case NeoverseV1:
PrefFunctionLogAlignment = 4;
break;
case Saphira:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX2T99:
CacheLineSize = 64;
PrefFunctionLogAlignment = 3;
PrefLoopLogAlignment = 2;
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX:
case ThunderXT88:
case ThunderXT81:
case ThunderXT83:
CacheLineSize = 128;
PrefFunctionLogAlignment = 3;
PrefLoopLogAlignment = 2;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case TSV110:
CacheLineSize = 64;
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 2;
break;
case ThunderX3T110:
CacheLineSize = 64;
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 2;
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
}
}
AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU,
const std::string &FS,
const TargetMachine &TM, bool LittleEndian,
unsigned MinSVEVectorSizeInBitsOverride,
unsigned MaxSVEVectorSizeInBitsOverride)
: AArch64GenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()),
CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()),
IsLittle(LittleEndian),
MinSVEVectorSizeInBits(MinSVEVectorSizeInBitsOverride),
MaxSVEVectorSizeInBits(MaxSVEVectorSizeInBitsOverride), TargetTriple(TT),
FrameLowering(), InstrInfo(initializeSubtargetDependencies(FS, CPU)),
TSInfo(), TLInfo(TM, *this) {
if (AArch64::isX18ReservedByDefault(TT))
ReserveXRegister.set(18);
CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering()));
InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
Legalizer.reset(new AArch64LegalizerInfo(*this));
auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo());
// FIXME: At this point, we can't rely on Subtarget having RBI.
// It's awkward to mix passing RBI and the Subtarget; should we pass
// TII/TRI as well?
InstSelector.reset(createAArch64InstructionSelector(
*static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI));
RegBankInfo.reset(RBI);
}
const CallLowering *AArch64Subtarget::getCallLowering() const {
return CallLoweringInfo.get();
}
const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const {
return InlineAsmLoweringInfo.get();
}
InstructionSelector *AArch64Subtarget::getInstructionSelector() const {
return InstSelector.get();
}
const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const {
return Legalizer.get();
}
const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const {
return RegBankInfo.get();
}
/// Find the target operand flags that describe how a global value should be
/// referenced for the current subtarget.
unsigned
AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
const TargetMachine &TM) const {
// MachO large model always goes via a GOT, simply to get a single 8-byte
// absolute relocation on all global addresses.
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
return AArch64II::MO_GOT;
if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) {
if (GV->hasDLLImportStorageClass())
return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT;
if (getTargetTriple().isOSWindows())
return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB;
return AArch64II::MO_GOT;
}
// The small code model's direct accesses use ADRP, which cannot
// necessarily produce the value 0 (if the code is above 4GB).
// Same for the tiny code model, where we have a pc relative LDR.
if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) &&
GV->hasExternalWeakLinkage())
return AArch64II::MO_GOT;
// References to tagged globals are marked with MO_NC | MO_TAGGED to indicate
// that their nominal addresses are tagged and outside of the code model. In
// AArch64ExpandPseudo::expandMI we emit an additional instruction to set the
// tag if necessary based on MO_TAGGED.
if (AllowTaggedGlobals && !isa<FunctionType>(GV->getValueType()))
return AArch64II::MO_NC | AArch64II::MO_TAGGED;
return AArch64II::MO_NO_FLAG;
}
unsigned AArch64Subtarget::classifyGlobalFunctionReference(
const GlobalValue *GV, const TargetMachine &TM) const {
// MachO large model always goes via a GOT, because we don't have the
// relocations available to do anything else..
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() &&
!GV->hasInternalLinkage())
return AArch64II::MO_GOT;
// NonLazyBind goes via GOT unless we know it's available locally.
auto *F = dyn_cast<Function>(GV);
if (UseNonLazyBind && F && F->hasFnAttribute(Attribute::NonLazyBind) &&
!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
return AArch64II::MO_GOT;
// Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB.
if (getTargetTriple().isOSWindows())
return ClassifyGlobalReference(GV, TM);
return AArch64II::MO_NO_FLAG;
}
void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// LNT run (at least on Cyclone) showed reasonably significant gains for
// bi-directional scheduling. 253.perlbmk.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling or Disabling the latency heuristic is a close call: It seems to
// help nearly no benchmark on out-of-order architectures, on the other hand
// it regresses register pressure on a few benchmarking.
Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic;
}
bool AArch64Subtarget::enableEarlyIfConversion() const {
return EnableEarlyIfConvert;
}
bool AArch64Subtarget::supportsAddressTopByteIgnored() const {
if (!UseAddressTopByteIgnored)
return false;
if (TargetTriple.isiOS()) {
unsigned Major, Minor, Micro;
TargetTriple.getiOSVersion(Major, Minor, Micro);
return Major >= 8;
}
return false;
}
std::unique_ptr<PBQPRAConstraint>
AArch64Subtarget::getCustomPBQPConstraints() const {
return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr;
}
void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const {
// We usually compute max call frame size after ISel. Do the computation now
// if the .mir file didn't specify it. Note that this will probably give you
// bogus values after PEI has eliminated the callframe setup/destroy pseudo
// instructions, specify explicitly if you need it to be correct.
MachineFrameInfo &MFI = MF.getFrameInfo();
if (!MFI.isMaxCallFrameSizeComputed())
MFI.computeMaxCallFrameSize(MF);
}
bool AArch64Subtarget::useSVEForFixedLengthVectors() const {
// Prefer NEON unless larger SVE registers are available.
return hasSVE() && getMinSVEVectorSizeInBits() >= 256;
}
bool AArch64Subtarget::useAA() const { return UseAA; }
|