1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
//===- AMDGPULDSUtils.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// AMDGPU LDS related helper utility functions.
//
//===----------------------------------------------------------------------===//
#include "AMDGPULDSUtils.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/ReplaceConstant.h"
using namespace llvm;
namespace llvm {
namespace AMDGPU {
// An helper class for collecting all reachable callees for each kernel defined
// within the module.
class CollectReachableCallees {
Module &M;
CallGraph CG;
SmallPtrSet<CallGraphNode *, 8> AddressTakenFunctions;
// Collect all address taken functions within the module.
void collectAddressTakenFunctions() {
auto *ECNode = CG.getExternalCallingNode();
for (auto GI = ECNode->begin(), GE = ECNode->end(); GI != GE; ++GI) {
auto *CGN = GI->second;
auto *F = CGN->getFunction();
if (!F || F->isDeclaration() || AMDGPU::isKernelCC(F))
continue;
AddressTakenFunctions.insert(CGN);
}
}
// For given kernel, collect all its reachable non-kernel functions.
SmallPtrSet<Function *, 8> collectReachableCallees(Function *K) {
SmallPtrSet<Function *, 8> ReachableCallees;
// Call graph node which represents this kernel.
auto *KCGN = CG[K];
// Go through all call graph nodes reachable from the node representing this
// kernel, visit all their call sites, if the call site is direct, add
// corresponding callee to reachable callee set, if it is indirect, resolve
// the indirect call site to potential reachable callees, add them to
// reachable callee set, and repeat the process for the newly added
// potential callee nodes.
//
// FIXME: Need to handle bit-casted function pointers.
//
SmallVector<CallGraphNode *, 8> CGNStack(df_begin(KCGN), df_end(KCGN));
SmallPtrSet<CallGraphNode *, 8> VisitedCGNodes;
while (!CGNStack.empty()) {
auto *CGN = CGNStack.pop_back_val();
if (!VisitedCGNodes.insert(CGN).second)
continue;
for (auto GI = CGN->begin(), GE = CGN->end(); GI != GE; ++GI) {
auto *RCB = cast<CallBase>(GI->first.getValue());
auto *RCGN = GI->second;
if (auto *DCallee = RCGN->getFunction()) {
ReachableCallees.insert(DCallee);
} else if (RCB->isIndirectCall()) {
auto *RCBFTy = RCB->getFunctionType();
for (auto *ACGN : AddressTakenFunctions) {
auto *ACallee = ACGN->getFunction();
if (ACallee->getFunctionType() == RCBFTy) {
ReachableCallees.insert(ACallee);
CGNStack.append(df_begin(ACGN), df_end(ACGN));
}
}
}
}
}
return ReachableCallees;
}
public:
explicit CollectReachableCallees(Module &M) : M(M), CG(CallGraph(M)) {
// Collect address taken functions.
collectAddressTakenFunctions();
}
void collectReachableCallees(
DenseMap<Function *, SmallPtrSet<Function *, 8>> &KernelToCallees) {
// Collect reachable callee set for each kernel defined in the module.
for (Function &F : M.functions()) {
if (!AMDGPU::isKernelCC(&F))
continue;
Function *K = &F;
KernelToCallees[K] = collectReachableCallees(K);
}
}
};
void collectReachableCallees(
Module &M,
DenseMap<Function *, SmallPtrSet<Function *, 8>> &KernelToCallees) {
CollectReachableCallees CRC{M};
CRC.collectReachableCallees(KernelToCallees);
}
SmallPtrSet<Function *, 8> collectNonKernelAccessorsOfLDS(GlobalVariable *GV) {
SmallPtrSet<Function *, 8> LDSAccessors;
SmallVector<User *, 8> UserStack(GV->users());
SmallPtrSet<User *, 8> VisitedUsers;
while (!UserStack.empty()) {
auto *U = UserStack.pop_back_val();
// `U` is already visited? continue to next one.
if (!VisitedUsers.insert(U).second)
continue;
// `U` is a global variable which is initialized with LDS. Ignore LDS.
if (isa<GlobalValue>(U))
return SmallPtrSet<Function *, 8>();
// Recursively explore constant users.
if (isa<Constant>(U)) {
append_range(UserStack, U->users());
continue;
}
// `U` should be an instruction, if it belongs to a non-kernel function F,
// then collect F.
Function *F = cast<Instruction>(U)->getFunction();
if (!AMDGPU::isKernelCC(F))
LDSAccessors.insert(F);
}
return LDSAccessors;
}
DenseMap<Function *, SmallPtrSet<Instruction *, 8>>
getFunctionToInstsMap(User *U, bool CollectKernelInsts) {
DenseMap<Function *, SmallPtrSet<Instruction *, 8>> FunctionToInsts;
SmallVector<User *, 8> UserStack;
SmallPtrSet<User *, 8> VisitedUsers;
UserStack.push_back(U);
while (!UserStack.empty()) {
auto *UU = UserStack.pop_back_val();
if (!VisitedUsers.insert(UU).second)
continue;
if (isa<GlobalValue>(UU))
continue;
if (isa<Constant>(UU)) {
append_range(UserStack, UU->users());
continue;
}
auto *I = cast<Instruction>(UU);
Function *F = I->getFunction();
if (CollectKernelInsts) {
if (!AMDGPU::isKernelCC(F)) {
continue;
}
} else {
if (AMDGPU::isKernelCC(F)) {
continue;
}
}
FunctionToInsts.insert(std::make_pair(F, SmallPtrSet<Instruction *, 8>()));
FunctionToInsts[F].insert(I);
}
return FunctionToInsts;
}
bool isKernelCC(const Function *Func) {
return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
}
Align getAlign(DataLayout const &DL, const GlobalVariable *GV) {
return DL.getValueOrABITypeAlignment(GV->getPointerAlignment(DL),
GV->getValueType());
}
static void collectFunctionUses(User *U, const Function *F,
SetVector<Instruction *> &InstUsers) {
SmallVector<User *> Stack{U};
while (!Stack.empty()) {
U = Stack.pop_back_val();
if (auto *I = dyn_cast<Instruction>(U)) {
if (I->getFunction() == F)
InstUsers.insert(I);
continue;
}
if (!isa<ConstantExpr>(U))
continue;
append_range(Stack, U->users());
}
}
void replaceConstantUsesInFunction(ConstantExpr *C, const Function *F) {
SetVector<Instruction *> InstUsers;
collectFunctionUses(C, F, InstUsers);
for (Instruction *I : InstUsers) {
convertConstantExprsToInstructions(I, C);
}
}
bool hasUserInstruction(const GlobalValue *GV) {
SmallPtrSet<const User *, 8> Visited;
SmallVector<const User *, 16> Stack(GV->users());
while (!Stack.empty()) {
const User *U = Stack.pop_back_val();
if (!Visited.insert(U).second)
continue;
if (isa<Instruction>(U))
return true;
append_range(Stack, U->users());
}
return false;
}
bool shouldLowerLDSToStruct(const GlobalVariable &GV, const Function *F) {
// We are not interested in kernel LDS lowering for module LDS itself.
if (F && GV.getName() == "llvm.amdgcn.module.lds")
return false;
bool Ret = false;
SmallPtrSet<const User *, 8> Visited;
SmallVector<const User *, 16> Stack(GV.users());
SmallPtrSet<const GlobalValue *, 8> GlobalUsers;
assert(!F || isKernelCC(F));
while (!Stack.empty()) {
const User *V = Stack.pop_back_val();
Visited.insert(V);
if (auto *G = dyn_cast<GlobalValue>(V)) {
StringRef GName = G->getName();
if (F && GName != "llvm.used" && GName != "llvm.compiler.used") {
// For kernel LDS lowering, if G is not a compiler.used list, then we
// cannot lower the lds GV since we cannot replace the use of GV within
// G.
return false;
}
GlobalUsers.insert(G);
continue;
}
if (auto *I = dyn_cast<Instruction>(V)) {
const Function *UF = I->getFunction();
if (UF == F) {
// Used from this kernel, we want to put it into the structure.
Ret = true;
} else if (!F) {
// For module LDS lowering, lowering is required if the user instruction
// is from non-kernel function.
Ret |= !isKernelCC(UF);
}
continue;
}
// User V should be a constant, recursively visit users of V.
assert(isa<Constant>(V) && "Expected a constant.");
append_range(Stack, V->users());
}
if (!F && !Ret) {
// For module LDS lowering, we have not yet decided if we should lower GV or
// not. Explore all global users of GV, and check if atleast one of these
// global users appear as an use within an instruction (possibly nested use
// via constant expression), if so, then conservately lower LDS.
for (auto *G : GlobalUsers)
Ret |= hasUserInstruction(G);
}
return Ret;
}
std::vector<GlobalVariable *> findVariablesToLower(Module &M,
const Function *F) {
std::vector<llvm::GlobalVariable *> LocalVars;
for (auto &GV : M.globals()) {
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
continue;
}
if (!GV.hasInitializer()) {
// addrspace(3) without initializer implies cuda/hip extern __shared__
// the semantics for such a variable appears to be that all extern
// __shared__ variables alias one another, in which case this transform
// is not required
continue;
}
if (!isa<UndefValue>(GV.getInitializer())) {
// Initializers are unimplemented for local address space.
// Leave such variables in place for consistent error reporting.
continue;
}
if (GV.isConstant()) {
// A constant undef variable can't be written to, and any load is
// undef, so it should be eliminated by the optimizer. It could be
// dropped by the back end if not. This pass skips over it.
continue;
}
if (!shouldLowerLDSToStruct(GV, F)) {
continue;
}
LocalVars.push_back(&GV);
}
return LocalVars;
}
SmallPtrSet<GlobalValue *, 32> getUsedList(Module &M) {
SmallPtrSet<GlobalValue *, 32> UsedList;
SmallVector<GlobalValue *, 32> TmpVec;
collectUsedGlobalVariables(M, TmpVec, true);
UsedList.insert(TmpVec.begin(), TmpVec.end());
TmpVec.clear();
collectUsedGlobalVariables(M, TmpVec, false);
UsedList.insert(TmpVec.begin(), TmpVec.end());
return UsedList;
}
} // end namespace AMDGPU
} // end namespace llvm
|